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Outlook

 ODEG (quantum dots) structures will be considered and single electron
processes will be analyzed (transport inherently related to inter-dot tunneling)

*The simplest way to approach the single electron world: a nanosized capacitor

« Continouos vs quantized quantities: the “struggle” between adding a single
electron to a nanosized capacitor and adjusting its potential

» Coulomb blockade effects, Coulomb staircase and oscillations

» Three-terminal (active) devices: single electron transistor in conventional and
alternative fashions

*Preliminary: discrete energy levels in semiconductor quantum dots (potential
wells) and tunneling

*Tunneling through a quantum dot (double barrier): resonant tunneling diodes
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Nanosized conductors (an ideal case)

Capacitance of a nanosized conducor (e.g., a metal) sphere

=CV

= Ql4ne,r
= 4me r
CV2/2

mo <O

Es.:ifr~=10 nm, C ~ 1 aF
AtV =1V Q ~ 1018 Coulomb
ThatisN ~6 e !l

The discrete nature of electric charge dominates

the behavior of nanosized capacitors

111 SYSICINS U1 VOI'Y SHldll COnUUCLULS, uic \;‘apu'cuauccs appluu;;u V'dlll.l)cb bulllblcol;:yabrlal.;lel
that the charging energy given by (4.47) due to a single electron, e~ /2C, becomes ¢ thp ravle
to the thermal energy, kp 7;. The transfer of a single electron between conductofris ert.onS
results in a voltage change that is significant compared to the therm_al vol?age uc'tua 1 -
and creates an energy barrier to the further transfer of electrons. This barrier remains un

the charging energy is overcome by sufficient bias. How small must suc(lil a Stmct;lr:eb?r‘;i
simple example is the case of a conducting spher.e abgve a grounded con 1(110 ntl.g p :L bs.tratc
example approximates a metal cluster imbedded in an 1nsulator.above a cqnduc 1ng. poura ,
whichi s realized structure that has been extenswel)f stuc¥1e experimy ! );
fe exact solution may Ye found using the method of images, which gives the capacitanc

Accurate capacitance evaluation for realistic cases

After Ferry and Goodnick,
Transport in nanostructures,
Cambridge (1997)

of the sphere as [33]

C =4nea (1 +oa+ (4.50)

a? _a
where a is the radius of the sphere and ! is the distance above the conducting substrate. As
the radius of the sphere becomes small compared to /, the capacitance becomes independent
of the distance of the cluster from the substrate. An alternate example is that of a flat circular
disk located parallel to and a distance d above a ground plane. This example is more closely
analogous to the semiconductor quantum dots fabricated by lateral confinement of a 2DEG
as discussed in the previous sections. The solution is given in a problem in Jackson s
textbook [34] (which we leave as an exercise for the reader!), with the capacitance given in
the limit of d > R as

(4.51)

where R is the radius of the disk. Equaliigthecharging energy with the thermal energy,
we see that at room temperature, C ~ 3 x 10-'8 | - The corresponding radius for a sphere
from (4.50) is on the order of g ~ 28 nm (assuming a relative dielectric constant of 1),
and somewhat larger for the disk. The facts that € > ¢, in real structures and that the
charging energy should be several times larger than the thermal energy imply that sub-10-nm
structures need to be fabricated in order to see clear single-electron charging effects at room
temperature. Although it is still somewhat challenging with today’s lithographic techniques
to nanoengineer such structures, it is not difficult to grow insulating films with random
metallic clusters on this order in which Coulomb blockade effects are readily observed, even
at room temperature. Further, if we perform measurements at cryogenic temperatures, then
the size scale becomes comparably larger, allowing single-electron effects to be observed
in nanofabricated quantum dot structures, e e~ - Pag. 3
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Tunneling rules the behavior of the system

Island

Lead Lead

Tunneling inherently involved
when “charging” the capacitor

ng G
2 ———
1| —
= o

12 a2 5/2
CV /e

Figure 2: Electron number
versus gate voltage characteris-
tics of single-electron box, The
number of electron in the quan-
tum dot increases one by one
as the gate voltage increases.

(4.46)

where C is the capacitance, Q is the charge on the conductor, and V the electrostatic
potential relative to some chosen reference (e.g., ground). Since we are considering an
ideal conductor, any charge added to the conductor rearranges itself such that the electric
field inside vanishes, and the surface of the conductor becomes an equipotential surface.
Therefore, the electrostatic potential associated with the conductor relative to its reference
is uniquely defined. If we consider two conductors connected by a d.c. voltage source, a
voltage + Q builds up on one conductor and a charge —Q on the other. The capacitance of the
two conductor system is then defined as C = Q/ Vi,. The electrostatic energy stored in the
two conductor system is the work done in building up the charge Q on the two conductors
and is given by

lectrostatic energy,,,

For a system of N conductors, the charge on conductor i may be written
Q=) CyV; (4.48)

where the diagonal values C;; are the capacitance of conductor i if all other conductors are
grounded. The diagonal elements are commonly referred to as the coefficients of capaci-
tance; the off-diagonal elements are called the coefficients of induction. The total electro-
static energy stored in a multiconductor system is given by the generalization of Eq. (4.47)
as

E=2 Y Y00, (4.49)
i J

It is important to note that the polarization charge on the capacitor, ¢, does not have to
be associated with a discrete number of clectrons, IV. This charge is essenually due w a

rearrangement of the electron gas with respect to the positive background of fors, amdas—

such it may take on a continuous range of values. It 1s ofily when We COnSider Changes i
this charge due to the tunneling of a single electron between the conductors that the discrete
nature becomes apparent.

Discrete (charge) vs continuous (voltage)

Fisica delle Nanotecnologie 2005/06 - ver. 4 - part 3 - pag. 4



Conditions to observe “quantized effects”

Basic Operation of Single-Electron Box

As the size of the quantum dot decreases, the charging energy W, of a single exce
charge on the dot increases. 1f the gquantum-dot size is sufficiently small and the char
ing energy W, is much greater than thermal energy AT, no electron tunnels to and fra:
the quantum dot. Thus, the electron number in the dot takes a fixed value, say zer
when both the electrodes are grounded. The charging effect, which blocks the inje
tion/ejection of a single charge 1nt0e'fr0m a quantum dot, is called Coulomb blockat
effect. Therefore, the condition for observing Coulomb blockade effects is expressed a

where C is the capacitance of the quanfien dot and 7 is the temperature of the system,

Howevet, it should be noted that by applying a positive bias to the gate electrode »
could attract an electron to the quantum dot, The increase of the gate voltage attracts :
electron more strongly to the quantum dot. When the gate bias exceeds a certain value 2
electron finally enters the quantum dot and the electron number of the dot becomes on
Further increase of the gate voltage makes it possible to make the electron number tw
Thus, in the single-electron box, the electron number of the quantum dot is controlle
one by one, by utilizing the gate electrode (Figure 2).

Conditions for Observing Single-Electron Tunneling Phenomena

In order to observe single-glectron tunneling phenornena, or Coulomb blockade effect
there are two necessary conditions. One condition is, as described above, that the char
ing energy of a single excess electron on a quantum dot is much greater than the therm
energy (Eq. (1}). The other condition is that the tunnellng resistance R, of the tunnelir
junction must be larger than resistance quantum Afe?. This condition is required to suj
press the quantum fluctuations in the electron number, #, of the dot so that they are suft
ciently small for the charge to be well localized on the quantum dot. The condition
obtained by keeping uncertainty principle AWAs >/ while letting AW be the chargin
energy of the quantum dot, ~¢*/C, and At be the lifetime of the charging, R,C. Then, tt
uncertainty principle reduces to

2 b
&W-Af-%-RtC:eth>h. (C

As a result, one obtains the condition for the tunneling resistance R, in order to obsen
the Coulomb blockade effects

(4

Temperature-related energy
fluctuations must be
negligible (low T operation!!)

Specific conditions must be
fulfilled to realize
experimentally the quantum-
driven phenomenon

Tunneling resistance must be
large enough (weak coupling)

Da R. Waser Ed., Nanoelectronics
and information technology (Wiley-
VCH, 2003)
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See R. Compatio et al. Coulomb blockade (Cb) and SE tunneling

MEL-ARI EC Project
Technol. Rodmap 1999

(a) Conlomb Blockade (b} Single Electron Tunnelling
[~
bag. 1 1 [
H it Hi m'\ In quantum
Hrg v
> tay . | mech. terms:

double barrier

eV, —m——_ _ _ _ resonant
T eV :
— _t - - = tunneling

Flgure 2.2:- For an island oftolal capactianee Cwith N electrons beingp | the chemical polential
af the highes! filled electron sile, i, e chemical polential of the first avallable emply slale
Soran electron and pand p_the chemical poteniialys af the fefi and righl elecirodes respectively,
Womay be shown thal the energy lo add an eleciron lo the island (s p . - e Therefore
provided ¢ iC w kT (the thermal energy - Le. O 05 smally and the tunnelling resistance, K e K
w5 WKLY (L@ Lhe electron wavelunction may belocalised on the island) for a vollape V
applied across the electrodes, no eleclrons may flow ifp = noand @ - the stale known as
Cowlomb blockade (a). § a larger Bay is applied across the elecirodes such thal g = =1
then empiy states nay be popilated in the skaad and single electroas may tunael through the
ishand 0. A gale may be used (o changee the Fermi level of the island and therefore swilcd the
single eleclron current on or aff.

Coulomb blockade: an additional electron is accepted by the
dot only if the voltage Is raised above some limit
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Coulomb oscillations and staircase Da G. Timp, Nanotechnology

(Springer-Verlag, 1999)
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After Ferry and Goodnick, g
Transport in nanostructures, 3
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Examples of measurements

o o 1 4 1See Imamura et al.
{a) Experiment AS ib) Theory A
i = PRB 61 46 (2000) }F T=4.2°K
—.2F 1 =2} A
< < |
=R | = ]
= 13 =
S | f G
2t iF { 2
A
-4k, . . . 4 4L . . =
2 - 0 1 2 2 -1 0 1 2
Tip Voltage V (V) Tip Voltage V (V) =
©
FIG. 3. (a) Experimental /-1 curves for a 10-nm-thick ;
CoyAlOy, at room temperature. A, B, C, and D refer to different o
distances between the STM tip from the surface of the sample. The
lateral position for A and B is different from that for C and D. (b)
Corresponding theoretical curves in a triple tunnel junction system
at T=300 K. The tunnel resistance at the bottleneck is taken to be

R, =600, 700, 1300, and 3500 M{} for lines A, B, C, and D, re-
spectively. The other tunnel resistances are R,=R;=1 MI} and
the capacitances are €| =4.48x 107" F, C,=2.13x10"" F, and
C.=3.62x10"" F for all curves.

=0.2

O

0.2

B ~ V{volts)

Fig. 4.12. Experimental (A) and theoretical (B and C) I-V characteristics from an STM-contacted
10 nm diameter In droplet illustrating the Coulomb staircase in a double junction system. The peak-
to-peak current is 1.8 nA. The curves are offset from one another along the current axis, with the
STM measurements intercept corresponding to zero current. [After Wilkins et al., Phys. Rev. Lett. 63, 801 (1989), by

rmission. ]
room-temperature ’
granular metal films STM used to make a point-like
& L0 ) tunneling with nanosized dots
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Single Electron Transistor (SET)

(a)
qual_ntum dot gats
electrode I.' élec}rodf
A ¥
Pasima) :
LELTLLLL LT LLT L LY Vs
tun_l;eling c?Tp/EEtDr
junction
(b)
C, -ne [I:g (
| |
% Q| [+Q 'Q:ql 1+Qg
{.que.1 I'1L.L; m- dot

Bias Conditions for Coulomb Blockade Effects

The voltage range, which keeps the electron number at » in the dot, is ext_racted by col
sidering the free cnergy of the system. The free energy of the system having # electrol
in the island Fix) is expressed as

Flr)=W.(n)— () . ¢

where W,(n) is the charging energy and 4(n} is the work done by the voltage source co
nected to the gate electrode in order to make the electron number be from zero 1o 2.

It is important to note that when tunneling phenomena do not occur the tunnf_jlh
junction behaves as a normal capacitor and that the polarization charge cn Ithc capacitc
does not have 1o be associated with a discrcte number of electrons, 7. This polarizati

charge is essentially due to a rearrangement of the electron gas with respect to the posi-
tive background of ions, Therefore, the polarization charge takes a continuous range of
value, although the number of electrons in the quantum dot takes a discrete number of
electrons, #. The polarization charges on the tunneling junction and gate capacitor are
obtained from the following relationship.

Qt-ng—ne ,
2.% .
GG *

where. ¢, and O, are the polarization charge on the tunneling junction and the gate
capacitor, respectively. By using , and (g, the charging energy W, (n) of the quantum
dot is expressed as,

o’ o
Welm="r+—, 6
) 262G, o
which reduces to
2,2 2
wly =22 LGSy %

2 2 G

where Cy = G+ C,,. In addition, the work, A{n), done by the gate voltage source in order
1o make electron number of the quantum dot be from zero to # is expressed as,

2

G & G
In order to maintain the electron number in the quantum dot, the following conditions
are required.
F(n)(F(n:l:l) (%)
From Egs.(7) to (9), the voltage range, within which Coulomb blockade effects are in
effect and the electron number of the dot takes a fixed value of n, can be obtained as fol-

lows.
[n_l]i.az lrel]e (10)
2)c, F 2j¢,
This condition is also expressed with critical charge Q, as follows,
lal<a., (11)
where Q, is expressed as,
-
C
0, 25[“_&] _ (12)
20 G

Free energy change AF(n, n+1) that accompanies a transition of the electron number
from # to # + 1 is also simply expressed with critical charges Q). as,

_—
e

TSIV MDD TN IV LU U IV IV Y I U Y Vo

AP(nn+1)=F{n+1)-Fln)=2(0,-0,) . (13)

AT

)

oy O



quantum dot

Source Td Drain
S

tunneling junction ™

Cq
Vg
Ve
Vs

Figure 3:

{a) Schematic structure of single-electror
Lransistor.

(b} Lquivalent circuil of single-electron
transistor,

SET operation (in electronic terms)

Operation of Single-Electron Transistors
The operation of single-glectron transistors can be described by using Thévenin’s theo-
rem and applying derived Egs. (10 - (12) for a single-electron box.

By using the Thévenin’s theorem, the circuit connected to the tunneling junction of
the source is transformed to the circuit shown in Figure 4a. From this equivalent ¢ircuit
and Eq. (10), the condition to maintain the electron number at # in the dot is expressed

as
[n-ﬂ e et (14
2)Ce+Cq Gyt Cy 2)C +C4
which reduces to
l[ne—i—cv T e e E o U (15)
Cy 5 eE d Cq 7 Eel” . ‘
) fds i

In the same manner, the circuit connected to the tunneling junction of the drain is trans-
formed to the circuit shown in Figure 4b and the condition to maintain the electron
nurnber at # in the dot is expressed as

e 1
[—ne +5+ Cng] >V > =

e
cne—fic V} (16)
s+ g[ B8

2

P

6/2C, 36/2C,5612C, V/,

C,+Cq

Figure 5a shows the relationship between the drain voltage ¥y and the gate voltage
Vg which satisfies the conditions expressed by Egs. (15) and (16). The gray areas
shown in Figure Sa are Cowlomb blockade regions, where the Coulomb blockade is (c) !

effective and the electron number in the dot takes a fixed value indicated in the d

arcas.

On the other hand, in other regions, the quanturm dot can take at least two electron VQ—O
numbers. In the green regions shown in Figure 5a the quantum dot can take two electron
numbers. For example, in the green region indicated by A, the electron number in the dot 0
is zero or one. More precisely, the electron number of one ig preferable for the tunneling vl 2
junction of the source and the electron number of zero is preferable for the tunneling J “f
junction of the drain. Therefore, when a finite positive source-to-drain voltage ¥y, indi-
cated by dashed line in Figure 5a, is applied between the source and drain electrodes and
the gate voltage is e/2C,, an electron transport process described below is observable.
The initiai electron numier of the dot is assumed to be zere. For the tunneling junction
of the source, the electron number of one is preferable so that an electron tunnels from.
the source to the dot and the electron number in the dot becomes one. However, for the
tunneling junction of the drain, the electron number of zero is preferable so that an elec-
tron tunnels from the dot to the drain and the electron number in the dot becomes zeto.
As a resuit, an electron tunnels from the source to the drain, and source-to-drain current
is observable at these bias conditions.

In the same manner, at the gate voltage of #e/C, + &/2C,, the source-to-drain current’ (b) source-to-drain current [, versus gate voltage
I,, is observed, and thus oscillating L, versus V, characteristice shown in Figure 5b is V, characteristics of single-electron transistors.
observed in single-electron transistors. The osciﬁating Iz« V, characteristics are called (c) 1, versus F characteristics of single-clectron

des
Coulomb oscillations. transistors,

S

S

Figure 5:

{a) Relationship between the drain voltage ¥, and
the gate voltage 1V, satisfying the conditions
expressed by F,q.u.c[ 15)and (16). The dia-
mond-shaped structure along the x-axis is called
Coulomb diamond.

A gate is added to change the
voltage, i.e., to control the tunneling

through the dot
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I {nA)

(Unconventional) practical implementations

1) nanomelers

A tiny speck of gold positioned

between two parallel carbon

nanotubes forms a transistor that
forwards one electron at a une.

These single electron transistors

could be used to make extremely

small, low-power logic circuits.

Source: Lund Universily

R = 50MQ

.
-0.30 0.00 0.30
Viv)

1.5

See Thelander and Samuelson
Nanotechnology 13 108 (2002)

Produced by scanning probe
manipulation of small metal dots

15}
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Gate voltage (V) See Junno et al.,
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SET advantages (for the electronics)

Scaling down of electronic device sizes has been the fundamental strategy for improving
he performance of ultra-large-scale integrated circuits (ULSIs). Metal-oxide-semicon-
Juctor field-effect transistors (MOSFETs) have been the most prevalent electron devices
for ULSI applications, and thus the scaling down of the sizes of MOSFETSs [1][2] has
seen the basis of the development of the semiconductor industry for the last 30 years.

However, in the early years of the 21st century, the scaling of CMOSFETs is enter-
ng the deep sub-50 nm regime [3]. In this deep-nanoscaled regime, fundamental limits
»f CMOSFETs and technological challenges with regard to the scaling of CMOSFETs
wre encountered [4]. On the other hand, quantum-mechanical effects are expected to be
*ffective in these small structured devices. Therefore, in order to extend the prodigious
srogress of LSI performance, it is essential to introduce a new device having an opera-
ion principle that is effective in smaller dimensions and which may utilize the quan-
um-mechanical effects, and thus provide a new functionality beyond that attainable
with CMOSFETSs.

Single-electron devices [5][6] are promising as new nanoscaled devices because
single-electron devices retain thei labili i

ingle-electron devices retain their scalability even on an atomic scale and, moreover,
_hey can control the motion of even a single electron_Therefore, if the single-electron

Jevices are used as ULSI elements, the ULSI will have the attributes of extremely high
mtegration and extremely low power consumption. In this respect, scalability means that
he performance of electronic devices increases with a decrease of the device dimen-
sions. Power consumption is roughly proportional to the electron number transferred
from voltage source to the ground in logic operations. Therefore, the utilization of sin-
zle-electron devices in ULSIs is expected to reduce the power consumption of ULSIs.

to operate om temperature, the size of the quantum dot must be much
smaller than 10 nm. With the present technology, fabricating a structure smaller than 10

nm is difficult. In addition, 2) SETs have the disadvantage of high output impedance,
due to the high resistance of tunnel junctions, which must be much higher than 25.8 k!
(Eq. (3)). Finally, 3) source-to-drain voltage of SETs §hould pe smaller than gate Vo_ltage
swing in order to use SETs as gate controlled switching device, because the potential gf
the dot is easily affected by the source-to-drain voltgge. The effe;ct .of source-to—dra}n
voltage on the switching characteristics of SETs will be quantitatively evaluated in

Sect. 3.2.

Node Voitage [V]

Vcmos VseT

Q=A®B®C®D

(a)

(b)

()

(d

0.8
¢ \F-recr]arge Evaluation Periog
Period
03
’ AC
0 B, D
0.05
f \, hode
; “.._node2
0.8 =
} Q
0 Q
0 100 200 300 400

Time [ns]

Clock

SET
Inputs

Node-Voltages
of SETs

CMOS
Outputs

Figure 20: Example of SET logic
circuit, four-way exclusive OR cir-
cuit. The complementary imputs
and outputs are used.

Figure 21: The simulated timing chart
of the circuit shown in Figure 20.
Here,

C;=0.134F,

C;=Cy4=0.06 aF,

R, =500k,

C,=10fF,

Cp= 1fF,

C¢=50 aF,

Vsgr =50 mV, and

T=293K.

Example of mixed SET/CMOS technology
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Quantum dot / quantum well

cos (j};_x”) n=4 /\ 16E,

cos (STm‘) n=3 \—/ 9E,
cOoS (ng—) n=2 4E,
cos (—%) n=1 .Eu

A nanosized dot embedded in the “outer” world
IS a 3D quantum well (spherical quantum box)

odd

avan

odd

even

Simple 1D case

Yo

EEG fet— — 5.2 ED= E3

o —

E;=4Eypmmm——m e sc e e —-- o

— ——
2.5 E0= E2

2E0 p— —

E, =E° — TR
06 ED=E1

1
-1/2a 0 i2a

Hﬁure 8.12. Sketch of 3 one-dimansional sguare well showing how the anergy levels E, of a
finite well (right side, solid horizontal lines) lie below their infinite weall counterparts (left side,
dashed lines). {From G. P. Poole, Jr., Handbook of Physics, Wiley, New York, 1998, p. 285.)

Flgurg 9.1'!. Sketch of wavsfunctions for the four lowest energy levels (n=1-4) of the
one-dimensional infinite square well. For each level the form of the wavefunction is given on
the left, and its parity (even or odd) is indicated on the right {From C. P. Pacle, Jr., Handbook i

Physics, Wiley, New York, 1998, p. 289.)

Discrete energy levels appear

Da Poole and Owens
Introduction to Nanotechn.
Wiley (2003)
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Size, barrier height, material and energy

A “material discontinuity” is needed to define the well, e.g.: metal/vacuum,
metal/oxide, semiconductor/oxide, semiconductors with different gap energies

In the actual conditions, the potential barrier is finite, but few differences with
respect to infinite case (possibility of tunnelling, slight change in level energy,
typically a few excited levels can be kept in the well, ...)

Punti quantici (¢.D.). La nanostruttura pit difficile da ottenere, ma anche
la pill complessa per i suoi effetti sulle proprietd ottiche e di trasporto, & quella
in cui il confinamento del materiale a “gap” inferiore avviene in tutte e tre le
direzioni dello spazio. Dal punto di vista della simmetria di traslazione si pud
allora dire che la struttura & a dimensionalitd zero, e per questo viene chiamata
“puntc quantico” (G.D. dall'inglese Quantum Deot). I livelli di energia per gli
elettroni e per le buche sono solo livelli discreti, risultanti dal confinamento. Si
pud oftenere una prima grossolana approssimazione per gli elettroni dal calcolo
quantistico degli stati della buca cubica a pareti infinite di lato L,

(11.92)

con (ng,ny,me: = 1,2,..). Si oftiene un simile risultato per le buche, con la
separazione tra stati di massa pesante e di massa leggera dovuti al confinamento.
11 calcolo preciso, con potenziale finito, richiede anche in questo caso 'uso delle
condizioni di continuitd al contorno e lo sviluppo della matrice di Luttinger per
le buche.

Level energies can be
“engineered”

Simple one dimensional case

E =#2%k2/(2m*) withk =n2m/L

material
E = n2ren) 20002
\

n

Siz

®

AE, = (2n + 1) #°m/ (2 m* L?)

Example: free electron (m,), width
L=5nm: E,,-E,.;~1eV
(even larger for electrons in a
semiconductor if m* <m,)
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2D (and 1D) quantum confined structures

Al Ga, ,As  GaAs
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Figura 11.31

Schema di un superreticolo formato con Al.Ga; . As/GaAs (c = na+mb € il parametro

reticolare nella direzione z).

Superlattices
(heterostructures): sequence of
layers made of semiconductors

with different gap energies

Multiple Quantum Wells: superlattice with layer
thickness large enough to prevent interlayer
tunnelling, i.e., to confine the wavefunction

v MQW are “similar” to quantum dots
but quantum confinement occurs only
In one direction (the growth direction of
the thin layers)

v Very relevant for optical properties
and optoelectronics (we will see!)

Da Bassani Grassano,
Fisica dello Stato Solido,
OBoringhieri (2000)
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Semiconductor quantum dots and SET

T ——

By utilizing Eq. (23), the energy spectrum of a quantum dot, or an artificial atom,

can be studied. Tarucha ez al. have fabricated vertical single-electron transistors (SETg)
having circular-disk-shaped dots with double heterostructure barriers and Surroundﬁ
side gate, shown in Figure 6, and observed, in the transport measurements, atom-likg
properties such as "magic numbers" and "Hund’s first rule" [15], [16], [17]. '
In the vertical SET, the quantum dot is located in the center of the pitlar. The diamj

eter of the dot is a few hundred nanometers and its thickness is about 10 nm. The dot i§
sandwiched with two non-conducting heterostructure barrier layers, which separate it
W, =W, + AW (22) from conducting material above and below, A negative voltage applied to the side gatﬂ

Semiconductor Quantum Dot _ _
It should be noted that when the quantum-dot size is comparable with the QC Broglie
wavelength of the electrons in quantum dots (this situation fre_queptly occurs in the case
of semiconductor nanoscaled quantum dots), the energy quantization becomes compara-
ble with the charging energy. In this case, the energy difference due to the addition of a
single electron to the dot is given not by the charging energy W, but by the electron addi-
tion energy W,, which is given by the following formula.

— - around the pillar squeezed the effective diameter of the dot. Consequently, the number of
ere AW is the quantum energy level difference due to the addition of a single electron electrons is reduced, one by one, until the dot is completely empty. .

If the lateral confinement has the form of harmonic potential, the eigen-energy W,
As a result, periodicity of Coulomb oscillations is modified as [10], is expressed with radial quantum number #, (=0, 1, 2, ...) and the angular momentum

quantum number / (=0, £1, £2, ,..):

AW
INA =E‘; = 23 Wrt = (2 -+ ||+ iy (24)

Thus, in quantum dots holding just a few electron, the electron addition energy #, can ~ where #wy is the 1ate;ra1 confinement energy [16], [ 17]. Here, the Zeeman effect is
no lo,nger parameterized with ¥, and the Coulomb oscillations are significantly modi-  neglected. Therefore, it should be noted that each state is spin degenerate.

(24 .
fied by electron-electron interactions ntum_confinement effects. Therefore, in

and _guantus
this case, quantum dots are regarded -I 4].

Vertical SET - n-GaAs

Figure 6: Schematic of a quantum dot in a vertical
device (After Tarucha et al. [17]. © 2001 IOP Pub-
lishing Co.).

So@ziﬁ B
I Depletion I

n-GaAs a
. [ Double barrier heterostructure
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Artificial atom in vertical SET

. ~

Figure 7a shows the /;- ¥, characteristics, or Coulomb oscillation characteristics, of
the vertical SET. The distance between the consecutive peaks is proportional to W,
which is the energy difference between the transition point of (Nto N+ 1) and (N + 1 to
N +2) electrons and is equal to the difference of the ionization energy and the electron
affinity [18]. The addition energies, W,’s, extracted form the /- V, characteristics are
summarized in the inset of Figure 7a. It should be noted that W, 1s not constant, and
larger energy is necessary to add an electron to the dot with 2, 6, and 12 ¢lectrons. The
numbers in this sequence can be regarded as "magic numbers" for a two-dimensional
harmonic potential dot [15].

The reason is explained as follows [15], [16], [17]. F igure 7b shows the two-dimen-
sional orbits allowed in the dot. The orbit with the smallest radius corresponds to the
lowest energy state (W), ), which has zero angular momentum and can have two elec-
trons with opgosite spin. The addition of the second electron thus only costs the charg-
ing energy, ¢“/C. Extra energy AW is necessary to add the third electron, because the
clectron must go into the next energy state ( Wo..1» W5 1), which has an angular momen-
tum +1 and can have four electrons. Therefore, extra energy 1s again necessary to add
the seventh electron. The numbers in the above sequence can be thus regarded as magic
numbers for a two-dimensional harmonic dot.

In addition, for the filling of electrons in the same orbit, parallel spins are favored
by “‘Hund’s first rule”. This leads to another series of magic numbers of N=4, 9, 16, ...
corresponding to the half filling of the second, third, fourth orbits, respectively [17].

Thus, the atomic-like features are successfully observed in the vertical SETs having
circular disk quantum dots.

Since the above discussions concerning artificial atoms are based on ref. [16], [17],

the interested reader is advised to refer to the original monographs [16], [17] and related
articles, such as [15], [19], [20].

Artificial atom-like
behavior achieved in
specific qguantum dot

configurations

0 —
) (a) E f\ E
~ e 1,
& <
o
=
O
0
15 GATE VOLTAGE (v) 08
o) _‘ . ?
QEEEREE
¢/C €IC+AE e/C  €/C &/C eC+AE

Figure 7: Current flowing through a two dimen-
sional circular quantum dot on varying the gate
voltage.

(a) The first peak marks the voltage where the first
electron enters the dot, and the number of elec-
trons, N, increases by one at each subsequent peak.
The distance between adjacent peaks corresponds
to the addition energies (see inset).

(b) The addition of electrons to circular orbits is
shown schematically. The first shell can hold two
clectrons whereas the second shell can contain up
to four electrons. It therefore costs extra energy to
add the third and seventh electrons (A fter Kouwen-
hoven et al. [16], © 2001 IOP Publishing Co.).
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SET fabrication (conventional): example |

_ Confining See Kastner
Drain  Flectrodes Gate Ann.Phys 9 885 (2000)

caparitor

Fig. 1 Schematic drawing of a SET. Wires are connected to source and drain contacts to
pass current through the 2DEG at the GaAs/AlGaAs interface. Wires are also connected to
the confining electrodes to bias them negatively and to the gate electrode that controls the
electrostatic energy of the confined electrons.

SET: three-terminal device similar to MOSFET
but:
single electron capabilities, high speed (ps
range), no consumption (but requires low T!)
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SET fabrication (conventional): example Il

.4 Fabrication of Single-Electron Devices

here have been a number of reports on the fabrication of single-electron devices. Since
ingle-electron phenomena can be observed in any conductive substances, single-elec-
ron devices are fabricated in a variety of materials such as aluminum [24], heterostruc-
ures [25], and silicon. However, in order to utilize single-electron devices as elemental

at its ends. Since oxygen atoms penetrate not only from the surface oxide layer but also
from the backside (the interface of SOI and buried oxide) through the pattern side, oxi-
dation occurs more in the neighborhood of the pattern edges of the 2-D Si layers, as

levices of LSIs, the realization of single-eleciron devices madeinsiiconis cssential

"his can be achieved if fabrication techniques offianometer-scaled silicon quantum dots
re established.

Regarding silicon quantum dot formation, many approaches have been reported
26], [27], [28], [29], [30], [31] and they are generally categorized into two groups: pat-
sming the silicon quantum dots by fine-lithography techniques and the growth of sili-
on quantum dots by deposition processes.

Using the former approaches, it is possible to accurately define the structures and
ositions of quantum dots. For example, Takahashi eda novel silicon-quan-

shown in Figure 8. Ono es al have developed the vertical version of PADOX
(V-PADOX) [27], shown in Figure 9. In PADOX, laterally broad 2-D regions are essen-
tial for tunnel-barrier formation. On the other hand, in V-PADOX, vertically broad,
namely thick, 2-D regions are utilized for the tunnel-barrier formation. The advantage of
the V-PADOX is that the V-PADOX makes it possible to form two tiny islands in a small
area by utilizing not a lithographic process but the oxidation process, which induces the
accumulation of stress in small structures. Thus, by utilizing V-PADOX, two SETs can
be fabricated in an extremely small area. as shown in Figure 10.

The latter approaches are fayorable-from the viewpoints of throughput and fabri-
cated quantum-dot sizes. In fac uccessfully fabricated the room-tempera-
ture operating silicon single-electrorrmemory by using the formation process of thin
poly-silicon film, in which an array of 10-nm grains is naturally formed [28]. Tiwari et
al. reported single-electron memory having Si nanocrystal storage [29].

Equivalent circuit

(oo

Equivalent circuit

7H__

—@' thickness moduiatfon) J ¥-( Si width modulation j_

cuits for V-PADOX and PADOX. In the cross-sec-
tional and top views, broken lines represents
preoxidation Si patterns and hatched regions repre-
sent islands and leads after oxidation (After Ono er
al. [27], © 2000 IEEE).

U . (b) VA
am-dot fabrication process named pattern-depe DOX) J26]. When a (a) Side Gate A i : l
-D Si nano-wire, which has wide 2-17§ and 1s fabricated in _sili-. sie 0, ==
. . - . Island A A
on-on-insulator (SOI) wafer, is su , the oxidation process H— 1l
ot only reduces the width and height of the 1-D Si wire, but also constricts the Si wire =l 1
& S Vd
Cource> @ Corain> |4 VQF% 1Y
L g L
- V-PADOX ~ PADOX )—2— ﬁ\ [ﬂ | l m '
Cross seclio Gresssection e Cg wm=
Side Gate B T
Ve
Figure 10: Fabrication of two SETs.
‘ (a) Top view of the structure.
(b) Equivalent circuit (After Ono et al. [27],
© 2000 IEEE).
Figure 9: Si patterns and the corresponding cir-

used to obtain Si
guantum dots
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SET fabrication (conventional): example Il

Uchida et al. proposed another approach, where slight etching of an ultrathin SOI
film with an alkaline-based solution is utilized [30], [32]. The proposed device structure
is schematically illustrated in Figure 11a. As shown in the figure, the device structure is
almost the same as that of conventional SOI-MOSFETs, but the SOI film has two key
features: 1) its surface is intentionally undulated in nanoscaled dimensions as shown in
Figure 11b by utilizing an alkaline-based solution; 2) the channel SOT thick-ness is
thinned to a few nanometers. The nanoscaled undulation in the ultrathin film results in
the formation of nanoscaled potential fluctuations due to the difference of quantum con-
finement effects from one part to another. Consequently, both the narrow electron chan-
nel through potential valleys and small potential pockets, storing memory information,
are formed in the film as shown in Figure 11c. Since potential fluctuation still exists in
the narrow channel, the channel effectively splits into several quantum dots. The quan-
tum dots included in the channel are the origin of the SET operation. Thus, the device
works as a single-electron transistor with nonvolatile memory function. Since the fabri-
cation process of this SET is compatible with that of CMOSFETs. SET/CMOS hybrid

circuit is fabricated on a chip, as shown in Figure 12, and its operation is successfully
demonstrated’even at room temperature [32].

Nanosized “undulation”
(obtained by mild etching)
lead to a sequence of
guantum dots

Potential Profiles in undulated SOl channel

B, o
Gate Polysilicon/

SOl

Buried Oxide

Si Substrate

i
Undulated Ultrathin SOI Film

(b)

Figure 11: Device struc-
ture and operation principle
of'single-clectron transistor
with nonvolatile memory

function. Atomic-force microscope image
of SOI surface

Stored electrons at reservoir

,Source

(c)

Fisica delle Nanotecnologie 2005/06 - ver. 4 - part 3 - pag. 20



Reminder of tunnel effect | ....., ..

For t (6-45), we know from the qualitative arguments of the
last chapter that-geceptable solutions to the time-independent Schroedinger equation
should exist for ail values of the total energy E = 0. We also know that the equa-
tion breaks up into three separate equations for the three regions: x < 0 (left of the
barrier), 0 < x < a (within the barrier), and x > a (right of the barrier). In the regions

to the left and to the right of the barrier the equations are those for a free particle
of total energy E. Their general solutions are

(x) = Ae™* + Be ™ x<0 (6.46)
Wix) = Ce™* 4 De b= X>a
where
%= Vamk

h

In the region within the barrier, the form of the equation, and of its general solution,
depends on whether E < ¥, or E > F,. Both of these cases have been treated in the
previous sections. In the first case, E < V), the general solution is

r(x) = Fe M~ 4 Getnx O<x<a (6-47)
where
[2m{Vy — E
=0 B E <V
In the second case, £ > Vg, it is
W(x) = Fe¥mx 4 Ge tnx O<x<a (6-48)
where
2m(E — V) :
kg == P ° E>V,

Note that (6-47) involves real exponentials, whereas (6-46) and (6-48) involve complex

exponentials,

Since we are considering the case of a particle incident on the barrier from the
left, in the region to the right of the barrier there can be only a transmitted wave
as there is nothing in that region to produce a reflection. Thus we can set

D=0
In the present situation, however, we cannot set G = 0 in (6-47) since the value of x
is limited in the barrier region, 0 < x < a, so y(x) for E < ¥, cannot become infinitely
large even if the increasing exponential is present. Nor can we set G = 0 in (6-48)
since 1f(x) for E > ¥, will have a reflected component in the barrier region that
arises from the potential discontinuity at x = a.
We consider first the case in which the energy of the particle is less than the height

!I!lllncr Lc., the case:

In matching ¥(x) and dy(x)/dx at the points x = 0 and x = 4, four equations in the

arbitrary constants 4, B, C, F, and G will be obtained. These equations can be used
to evaluate B, C, F, and G in terms of A. The value of 4 determines the amplitude
of the eigenfunction, and it can be left arbitrary. The form of the probability density
corresponding to the eigenfunction obtained is indicated in Figure 6-14 for a typical
situation. In the region x > a the wave function is a pure traveling wave and so the
probability density is constant, as for x > 0 in Figure 6-10. Tn the region x < 0 the
wave function is principally a standing wave but has a small traveling wave com-
ponent becausc the reflected traveling wave has an amplitude less than that of the

Wiley (1985)

0 a *

Flgure 6-14 The probability density function ¥*¥ for a typical barrier penetration situation.

incident wave. So the probability density in that region oscillates but has minimum
values somewhat greater than zero, as for x < 0 in Figure 6-10. In the region
0 < x < a the wave function has components of both types, but it is principally a
standing wave of exponentially decreasing amplitude, and this behavior can be seen
in the behavior of the probability density in the region,

The most interesting result of the calculation is the ratio T, of the probability flux
transmitted through the barrier into the region x > g, to the probability flux incident
upon the barrier. This transmission coefficient is found to be

v,C*C (ghre — g b2 | 1 sinh? kya
T AT NN ) [ o o AP 49
Tt 1+16£17£ 1+4£1,£ (6-49)
Vo Y L& &)
where
2mVya’ E
byt = h—f(l_ﬁ, E<V,

If the exponents are very large, this formula reduces to De pendS on E/ VO and a

E
T~ 16 % (1 - Fo)e“l’mﬂ ka1 (6-50)
as can be verified with ease. When (6-50) is a good approximation, T is extremely
small.

These equations make a prediction which is, from the point of view of classical
mechanics, very remarkable, They say that a particle of mass m and total energy E,
incident on a potential barrier of height ¥, > E and finite thickness a, actually has a
certain probability T of penetrating the barrier and appearing on the other side. This
phenomenon is called barrier peneiration, and the particle is said to tunnel through
the barrier. Of course, T is vanishingly small in the classical limit because in that
limit the quantity 2mF,a*/h*, which is a measure of the opacity of the barrier, is ex-
tremely large.

We shall discuss barrier penetration in detail shortly, but let us first finish de-
scribing the calculations by considering the case in which the energy of the particle is

E”“ han the height of the barrier, i.e., the case:

n this case the eigenfunction is oscillatory in all three regions, but of longer wave-
length in the barrier region, 0 < x < a. Evaluation of the constants B, C, F, and G
by application of the continuity conditions at x = 0 and x = g, leads to the following
formula for the transmission coeflicient

* thiee = fkmay27] -1 2 ==
L RN Coind i ) PP ok, LI R oY
ok B {2y gl B g
VolVe LN
L
Wi ="1—F3 _fIv 0
e \g ! R K

MPELE

Depends on E/V,and a
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Table 6-2. A Summary of the Systems Studied in Chapter 6§

Reminder of

Name of Physical Potential and Probability Significant
System Example Total Energies Density Feature tu nn el eff e Ct I I
Zero Proton in E vry Results used
potential beam from for other
cyciotron Vix) systems
Step Conduction Vix) ' Penetration Da Eisberg Resnick, Quantum Physics
potential glectron near E PN of excluded Wiley (1985)
(energy surface of ' region
below top) metal o
Step Neutron E | Wy Partial reflec-
potential trying to Vix) ( \ f ; tion at
(energy escape | potential
above top) nucleus 5 discontinuity
Barrier # particle ! 'i Tunneling
potential trying to E /\/i‘\l—
| .
(energy  escape NAVA RS < | SIngle well tunneling
below top) ~ Coloumb g W i :
barrier
Barrier Electron scat- No reflection
potential tering from E ! I at certain
(energy negatively : [l 4 energies
above to ionized atom I I
P L—V {x) ' :
4] [F1
Finite Neutron __Vix) ! | Energy
square bound in E \y*w quantization
well nucleus | . . _
potential a ¢ a Tunneling relevant in
Infinite Molecule Vix) Approximation .
square strictly ! ; to finite Inter d ot trans pO It
well confined E i o square well
potential to box ! '
0 a
Simple Atom of Zero-point
harmonic vibrating l I cnergy
oscillator diatomic
potential molecule \*Y
M
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More on tunneling through quantum dots

Da R. Waser Ed., Nanoelectronics
2.1.1 Tunneling Through a Single Barrier and information technology (Wiley-
We c0n51dcr the turmelmg probabilit ingle | tenual barrier Figure 2. The VCH, 2003)

sion probability as a furu_tmn of the gleTo gy was calculated according to Eq. (l::) @) N
for three different thickncsses nf the bdmers F1rst wc observe a finite transmission Sednie pamiar
This effect is known as
the tunneling effect. The e]ectron wave function in front of the barrier leaks out through  1.0ev §
the barrier and leads to a finite transmission. The smaller the barrier thickness, the
higher 1s the tunneling probability of the eleetrons with energies below the potential
energy of the barrier. In a classical picture the electrons could not penetrate the harrier,
In addition we see a modulation of the transmmmon probability for electrons at energies
above the 1.0 eV barrier height. In this reglo ffects of transmitted and  0.0eV -
reflected electron waves appears, which demonsitate-the-wave character of the electrons.

1.0eV +

Oev |

h
o =~ 2
Lo o
:

2.1.2 Tunneling Through a Double Barrier Structure
To see the difference betwcen the tunnehng effect through a smgle barricr and the reso-
nant tunneling effe a-dise : by e (see Figure 3). We

o
=)
T

=
~

fnmehiAs double barrier structure with a transmission probability of 1. Th :
e 1 maxima appear below ! eV in Figure 3b: they could be interpreted -.
with a very narrow energetic bandwidth, through which electrons <z -

through open channels in the barrier. This is at first astonishing and not compatible with
a sequential tunneling picture. In a sequential transport picture we would expect that the
transmission probability through two barriers is very much smaller than through one g} J
bartier because the transmission through the first barrier is already much below 1. A
completely new quantum mechanical system has been developed which can not be
i ; . : described by the behaviour of each single system. This may also be a drawback for
Fizura 2y Behetiic batddagsantof e quantum devices in general, Quantum mechanical devices can therefore not be placed

e o 5 extremely close to each other without changing the characteristics of the single dewce
g tunneling transmission probability for

diflerent barrier thicknesses (b).

&
o

Transmission Probability

5 - 2
transmissi el
o B AT ssion through a single barrier now electrons with very low energles cancrossthe § pgp /

o]

o

=
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Figure 3: Schematic band diagram of a
double barrier structure of AlAs embedded
in GaAs (a) and the corresponding tunneling

Slngle barrler . Resonancesn may appear transmission probability (b).
corresponding to the positions of Double barrier
the quantum dot energy levels
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Resonant Tunneling Diode (RTD) |

subband
1 i yef® A
2nm AlAs Barrier ¢ i Carrent
' 5nm GaAs Well |} hr
: i
= 0.1 4 E
= §
5 5
£ 001, E b}
tn ]
@ 1E-3 4 i
E .':' E i Y
z i : e,
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Figure 5: Transmission probability of
a double barrier structure al different
supply voltages.

Voltage

eV
L |

Figure 2.3:- Basic concept of the RTD. The subband energy Fo is approximately inversely
proportional to the square of the well Thickness. The peak in e I-V curve occurs when the
(ficident electrons maich the energy of the subband and the e!{%mm resonantly tunnel from
the source to the drain.

Artificial atom levels

RTD proposed as a system with extremely high speed and low consumption
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Resonant Tunneling Diode (RTD) II

3.2 Current-Voltage Characteristics

The current density at a certain supply voltage can be calculated using the transmission

probability together with the corresponding actual electron occupation densities. For the
example of a double barrier structure the highly doped supply layers left and right of the
double barrier can be described as free electron gases. The current density is obtained as
the difference between the current density flux from the left to the right side of the dou-
ble barrier and that one in the opposite direction. After Tsu ez al. [2] this can be written
as:

j=(2—1f)|—3 [ [ dl@(ﬁ(W)—fr(WJreV))Tc(Wz,V)—;;?;z (18)

where the coherent transmission probability T, (W,V') is a function of the supply volt-
age V and energy in z direction W, f; and . are the Fermi distributions, left and right of
the double barrier, and kj and k, denote the parallel- and z-component of the momen-
tum, respectively. The integration of Eq. (18) leads to the current density expression

containing the supply function:
1+exp(WF —W,] '

kT

1+ E:xp[————vWF _:Vz]i eV]
B

(19)

*
j(V):“—”%"-;E [ aw . wp)in

For an accurate calculation of the transmission probability the real potential profile
across the device is required. The potential @ includes the device ‘energy band offset of
the heterojunctions, the voltage drop across the structure and the contributions from the
doping and mobile charges. By coupling the effective mass Schrodinger equation with
the Poisson equation the potential ® is obtained in a self-consistent manner.

Calculations of current voltage characteristics lead to a deeper insight into the phys-
ics of resonant tunneling diodes and are necessary in the device designing. A typical cal-
culation is shown in Figure 6. The main characteristic feature is the existence of a
negative differential resistance region which is the base of most of the RTD-applica-
tions. From the application point of view important parameters are: the peak current
density, the valley current density, the peak to the valley current density ratio (PVR) and
the peak voltage.

The peak current density decreases exponentially with the barrier thickness as the
halfwidth of the resonance Eq. (16).

While the absolute peak-current densities resulting from simulations are in good
agreement with experimental data, the calculated valley current densities are one or
more orders of magnitude lower than the experimental ones. For AlAs/GaAs or
AlAs/InGaAs diode structures on GaAs the experimental PVRs at room temperature are
in the order of 6. The predicted PVR values from simulations are more than one order of
magnitude higher (see Figure 7b and [10]). The reason for this discrepancy is the neglect
of scattering effects in the calculation. Scattering effects broaden the resonance in the
transmission probability while simultaneously damping it. The peak current density is
nearly not sensitive to scattering effects but the valley current and the PVR are very
strongly influenced.

An appropriate scattering model is based on the Breit-Wigner generalization of the
Lorentzian form of the resonant transmission probability. Within this formalism resonant
tunneling in one dimension is studied by Stone et al. [3] who derived the total transmis-
sion probability in the presence of inelastic scattering for a symmetric structure as:

irgr
(W =) +4T2

Tiot =

where I, is the half width of the resonance in the coherent transmission prd
['=T,+T is the total resonance half width, I'; representing the contribution ¥
ening due to the inelastic scattering. Biittiker [4] has interpreted this total {
probability as a sum of a coherent and sequential transmission probabilitiés?

La=T+T
In this picture of scattering the fraction of carriers penetrating the structuref
T,/ T,,=T,/T and the fraction of carriers traversing the structure s&
T,/ To,= T / T. From these results one can infer that the smaller the elasti¢
smaller is the amount of scattering needed to make the sequential tun
dominant. This means that in tunneling diodes with thick barriers (sharp res
spite of a small scattering probability, considerable sequential tunneling ¢
will be observed. Furthermore, Eq. (20) can be interpreted as a folding of’
transmission probability (Eq. (20)) with T'; =0) with a normalized Lorety
width I In current density calculations this mechanism conserves the peak
sity but affects the valley current very strongly resulting in lower PVR vz
kind of treatment of - ¥ curves the effect of scattering is used as a fitting
determine the resonance broadening at room temperature. For a typical i
AlAs barriers and a 5 nm GaAs quantum well a resonance halfwidth of abi
room temperature was found (see [5]). ’

From the theoretical point of view this treatment of scattering is not
Therefore a more complex approach is needed. In an enhanced calculation
fium Green-function theory is the base of the calculations in which st
charging, incoherent and inelastic scattering, and the band structure is cont
et al. [6] have developed a complex simulation package in which most of
effects are taken into account. A real-space tight binding formulation prov
rate synthesis of heterostructures on an atomic scale. It implies the con
inter-valley and inter-band transitions and gives a sophisticated descriptiol
in the gap-region (“band-wrapping”). This approach was the base for
device simulation package NEMO (NanoElectronic MOdeling) that sim
variety of quantum devices, including RTDs, HEMTs, HBTSs, superlattic
diodes.

(by
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Figure 7: Comparison between theory
according to Eq.(19) and experiment for a
GaAs reson 1
(a) peak current density,
(b) PVR.
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Resonant Tunneling Diode (RTD) I
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Figure 9: Tunneling time obtained
from resonant tunneling bipolar
transistors. The open circles and the
open squares show those for the
GaAs/AlAs RTDs, and the
InGaAs/InAlAs RTDs, respectively.

Example of RTD structure
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Conclusions

v The abiity to control single electrons has a huge appeal,
because of potential advantages in terms of operation speed,
power consumption, miniaturization and efficiency

v" Single electrons are “felt” by nanosized structures: a metal
nanosized capacitor can be tunneled only when a proper potential
Is established (Coulomb staircase)

v Coulomb staircase is a manifestation of a quantum effect
related to the small dimensions of the structure and to the discrete
nature of the electric charge

v Coulomb blockade can be exploited also to produce three
terminal devices (SET)

v Double barrier tunneling through a quantum dot is also a single
electron process exploitable to produce a class of novel diodes
(RTDs)
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