
	1			
Nome e Cognome:	□LUN Data:	□MAR [GIO	8

<u>Circuito risonante RLC</u>

Il circuito di figura, composto da un resistore di resistenza R, da un induttore (bobina) di induttanza L e resistenza <u>interna</u> r, e un capacitore di capacità C, si comporta come un oscillatore forzato (e smorzato).

1. Determinate l'espressione della funzione di trasferimento T(f) (complessa) che lega il fasore $V_{\omega,out}$ con $V_{\omega,in}$ in funzione della frequenza f. Determinate inoltre l'espressione di A(f) = |T(f)| e quella di $tan(\phi) = \text{Im}(T(f))/\text{Re}(T(f))$. Infine determinate l'espressione della frequenza propria f_0 dell'oscillatore e lo sfasamento ϕ_0 che ci attende per $f = f_0$ (cioè a risonanza). Supponete condizioni di debole smorzamento. Solo se lo ritenete, o lo trovate, necessario, potete trascurare le resistenze interne di generatore e/o induttore.

Espressioni funzionali	$tan(\phi) =$
T(f) =	$f_0 =$
A(f) =	$\phi_0 =$

2. Montate il circuito scegliendo valori di R e C che consentano di avere una frequenza propria f_0 dell'ordine delle centinaia di Hz e una larghezza della curva di risonanza tale da consentire un'agevole ricostruzione sperimentale della curva stessa. Misurate R e anche r in continua (con il tester) Determinate il valore della frequenza propria attesa $f_{0,\text{att}}$, supponendo L = 0.5 H con tolleranza 10%.

R []	r []
C []	$f_{0,\mathrm{att}}$ []

- 3. Determinate sperimentalmente il valore della frequenza di risonanza f_0 . A tale scopo siete fortemente consigliati di utilizzare il metodo basato sull'osservazione dei segnali V_{out} e V_{in} con l'oscilloscopio <u>in modalità Y-X</u>. Spiegate brevemente nel riquadro cosa succede a risonanza nell'osservazione Y-X e chiaritene il perché.
- 4. Determinate sperimentalmente i valori delle frequenze f_- e f_+ in corrispondenza delle quali l'ampiezza del segnale V_{out} vale la metà del valore massimo (quello che si ha a risonanza!). Per questa misura si consiglia di usare l'oscilloscopio in modalità Y-t. Determinate inoltre il corrispondente valore della larghezza fwhm della curva di risonanza, $\Delta f_{\rm fwhm} = f_+ f_-$ e il fattore di qualità dell'oscillatore, $Qf = (2\pi/(\sqrt{3}))f_0/\Delta f_{\rm fwhm}$.
- 5. Controllate che siano verificate entro l'incertezza le "proprietà" della "curva di risonanza": $f_-f_+ = f_0^2$ e $\Delta f_{\rm fwhm} \sim (\sqrt{3})$ $(R+r)/(2\pi L)$, confrontando i valori ottenuti dalle misure con quelli attesi sulla base dei valori di R, r, L, C.

Misure			Breve spiegazione della misura in modalità X-Y:	
$f_0 =$	[]		
$f_{-} =$	[]		
$f_+ =$	[]		
$\Delta f_{ m fwhm} =$	[]	$\Delta f_{ m fwhm,att} =$ [] Valori attes	3i
Qf =				
$f_{-}f_{+}=$	[]	$(ff_+)_{att} = (f_{0,att})^2 =$ [] Page 1 of 3	}

6.	Ora dovete ricostruire, tramite misure, la "curva di risonanza", cioè il grafico della funzione $A(f)$. A questo
	scopo, dovete misurare il rapporto tra le ampiezze $A = V_{out}/V_{in}$ a diverse frequenze f del generatore e riportarlo
	nella tabella. Poiché il rapporto serve (solo) per costruire il grafico, fatelo calcolare a Python assieme alla sua
	incertezza, debitamente determinata. Scegliete l'intervallo di frequenze da esplorare in modo opportuno: è
	necessario che la "campana" della risonanza risulti evidente, dunque dovete cominciare con frequenze ben
	minori di f_{-} e finire con frequenze ben maggiori di f_{+} .

j	f []	V_{out} []	V _{in} []	j	f []	V_{out} []	V _{in} []
1				10			
2				11			
3				12			
4				13			
5				14			
6				15			
7				16			
8				17			
9				18			

7. Fate quindi un grafico per punti della funzione A(f) e valutate la congruenza con le attese, soprattutto per quanto riguarda la larghezza $\Delta f_{\rm fwhm}$, commentando al proposito nel riquadro dei commenti. Fate anche un best-fit dei dati, riportando tutte le informazioni necessarie (funzione utilizzata, parametri del fit e loro congruenza con le attese, chiquadro, eventuale covarianza, etc.) nel riquadro dei commenti.

Commenti (stima dal grafico di Δf_{fwhm} , congruenza con valori attesi, funzione di fit, valore dei parametri, chi-quadro, covi	arianza, etc.):
	Dogo 2 of 2
	Page 2 of 3

			Пого	$\overline{}$
Nome e Cognome:	LUN	MAR	□GIO	(21)
Nome e cognome.	Data:			(e)

Ora modificate il circuito in modo da ottenere lo schema di figura (si consiglia di mantenere gli stessi valori di prima per *R* e *C*). Questo circuito

è un oscillatore risonante "in parallelo", che è atteso presentare un comportamento "anti-risonante". Caratterizzate <u>qualitativamente</u> il suo comportamento, verificando <u>rapidamente</u> come varia l'ampiezza V_{out} in funzione della frequenza f del generatore. Inoltre individuate sperimentalmente la frequenza di risonanza f_0 e la larghezza della "curva di risonanza" $\Delta f_{\rm fwhm}$ definita come in precedenza. Riportate il tutto (valori delle misure e descrizione del comportamento) nel riquadro dei commenti, aggiungendo anche una breve interpretazione <u>qualitativa</u> del funzionamento del circuito.	induttore L r C R R R R R R R R R R R R
Misure e commenti vari:	R R
	Page 3 of 3