Nome e Cognome:	□LUN	□MAR □GIO	(3)
	Data:		

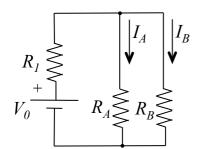
Partitori di tensione e di corrente

<u>Nota:</u> sul tavolo potete trovare un banco di componenti che comprende <u>anche</u> alcune resistori (non tutti diversi tra loro). I resistori si riconoscono perché hanno 4 o 5 anellini colorati secondo il codice delle resistenze (e anche perché conducono la stessa corrente a prescindere dal verso)

Dovete dimensionare e realizzare un partitore di tensione che, a partire da una d.d.p. V_{TOT} (prodotta dal generatore), fornisca una d.d.p. V_I che è frazione di V_{TOT} secondo un rapporto di partizione $\alpha = V_I/V_{TOT}$. Allo scopo userete un collegamento in serie di due resistori, come mostrato nello schema.

Avete libertà di scegliere il rapporto di partizione α e dunque di scegliere i valori delle resistenze R_1 e R_2 usando quanto disponibile. Potete eventualmente usare collegamenti in serie e/o parallelo tra più resistori.

Esiste un vincolo di progetto: la corrente erogata dal generatore deve essere inferiore a 50mA.


1.	Sulla base del modello, determinate la relazione attesa tra i valori dell
	resistenze e il rapporto di partizione α .

	Relazione attesa
α =	

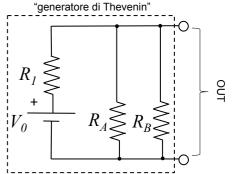
- 2. Determinate il valore atteso per il rapporto di partizione $\alpha_{\text{att,nom}}$ usando i valori nominali delle resistenze $R_{I,\text{nom}}$ e $R_{2,\text{nom}}$ prescelte e tenendo conto della tolleranza indicata dal costruttore (propagate correttamente l'errore!).
- 3. Misurate con il multimetro digitale le resistenze R_1 e R_2 e determinate sulla base delle misure e delle relative incertezze il rapporto di partizione atteso α_{atteso} .
- 4. Montate il circuito e misurate con il multimetro digitale i valori di tensione V_{TOT} e V_I rispettivamente ai capi della serie $R_I + R_2$ e di R_I . Determinate di conseguenza il rapporto di partizione α e confrontatelo con i valori attesi.
- 5. Misurate la caduta di tensione V_2 ai capi di R_2 (guardate la figura) e confrontate la somma $(V_1 + V_2)$ con V_{TOT} .
- 6. Riportate le conclusioni dei confronti e ogni eventuale commento che riteniate rilevante nel riquadro Commenti.

$R_{l,\text{nom}}[]$ (nominale)	Toller . [%]	R _{2,nom} [] (nominale)	Toller. [%]	$lpha_{ m att,nom}$	R_2	$\begin{cases} \begin{array}{c} \downarrow \\ \\ \end{array} \\ \begin{array}{c} \downarrow \\ \end{array} \\ V \\ \end{array} $
					${}$	$\begin{cases} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$R_I[]$		$R_2[]$		$\alpha_{ m atteso}$	V_0	
					modo opportuno, o	er collegandolo di volta in volta in ppure ii due tester a disposizione in volta (indicate e commentate enti la vostra scelta)
$V_{TOT}[V]$		$V_I[V]$	$\alpha = V$	I_{I}/V_{TOT}	<i>V</i> ₂ [V]	$(V_1 + V_2) [V]$

Commenti (includete anche il confronto tra V_{TOT} e V_{θ} riportato in pagina seguente):						
		101				
				D 4 . (0		
				Page 1 of 2		

Dovete dimensionare e realizzare un partitore di corrente secondo lo schema di figura, che impiega tre resistenze R_1 , R_A , R_B , e il generatore di d.d.p. V_0 .

La richiesta del progetto è che le intensità di corrente che fluiscono nelle resistenze R_A e R_B valgano rispettivamente I_A = 800 μ A e I_B = 400 μ A, entrambe con tolleranza ±30% (tale tolleranza dovrebbe permettervi di usare i valori nominali dei resistori in fase di progetto).


- 1. Determinate i valori delle resistenze (da scegliere tra i resistori disponibili sul banco o loro combinazioni) che vi permettono di soddisfare la richiesta di progetto e riportate il metodo seguito nei Commenti.
- 2. Misurate V_0 (a circuito aperto) e le correnti I_A e I_B che fluiscono effettivamente nelle due resistenze usando i tester a disposizione; commentate sulla congruenza tra misure e richiesta del progetto. Commentate anche se e perché avete trascurato le resistenze interne dello/degli strumento/i e del generatore.

$R_{I,\text{nom}}$ []	$R_{A,\text{nom}}$ []	$R_{B,\text{nom}}$ []	V

$V_{\theta}[V]$	$I_A[\mu A]$	$I_{B}\left[\muA\right]$

Considerate ora il circuito appena realizzato come un "generatore di Thevenin", la cui uscita è rappresentata dalle due boccole di figura.

- 3. <u>Determinate le relazioni attese</u> che legano i valori delle resistenze e della d.d.p. con la differenza di potenziale $V_{\rm Th,att}$ e la resistenza $R_{\rm Th,att}$ del generatore equivalente ("di Thevenin").
- 4. Misurate R_I , R_A , R_B e determinate i valori attesi per $V_{\text{Th,att}}$ e $R_{\text{Th,att}}$
- 5. Misurate V_{Th} e R_{Th} , spiegando nel riquadro in basso le tecniche impiegate e fornendo tutti i dettagli necessari.
- 6. Commentate sulla congruenza tra valori attesi e misurati e su qualsiasi altro aspetto rilevante.

	rati	$R_I[$]	R_A []	R_B []
10/1	valori misurati						
<u>L</u>						I	
	ati =	$V_{ m Th}$.[]]		$R_{\mathrm{Th}}[$]	
00/1	valori misurati						

Relazioni attese	$V_{\mathrm{Th,att}}$	$R_{ m Th,att}$		
/alori attesi	V _{Th,att} []	R _{Th,att} []		

Commenti (includete anche il confronto tra I valori misurati di I_A , I_B e I valori attesi sulla base della conoscenza delle resistenze e della d.d.p. del generatore):