			E_10	5007.0 – aa	16/1/
Nome e Cognome:		□LUN Data:	□MAR [⊒gio (7
Filtro	o RC				
In questa esercitazione dovete progettare (dimens da una resistenza R e un condensatore C (filtro "basso e passa-alto e dovete ovviamente verificarnal alternata sinusoidale.	ionare), costruire e fa un polo"). Potete	sceglie	re liberam	ente tra	passa-
1. Stabilite se intendete realizzare un passa-bass attesa $f_{T,att}$ sulla base dei resistori e capacitori d Si consiglia di: (i) scegliere frequenze di taglio Hz, nel caso rispettivamente di passa-basso e più grandi della resistenza interna del gener l'oscilloscopio con accoppiamento AC per no generatore (salvo se diversamente indicato).	isponibili; disegnato o dell'ordine di alcu passa-alto; (ii) imp ratore per evitare c	e lo sche ne centin piegare v di "sovra	ma del cir naia o poci alori di <i>R</i> accaricarlo atuale offs	cuito. he miglia "abbasta "; (iii)	aia di anza" usare o del
Espressione $\operatorname{di} f_T$: $f_T =$	Schema circultate.		ı 🗀 ا	passa-bas passa-alto	sso
$egin{array}{c ccccccccccccccccccccccccccccccccccc$					
2. Determinate attraverso una misura con l'oscil quale l'attenuazione del filtro vale $\frac{1}{2}$. Determi di taglio f_T . Misurate gli sfasamenti $\Delta \varphi_T$ coscienziosamente le incertezze. Commentate	inate poi allo stesso e $\Delta \varphi_{1/2}$ a quest	modo il e due f	l valore de requenze.	ella frequ	ienza
f_T [] $\Delta \varphi_T$ [π rad]	$f_{1/2}$ []		$\Delta \varphi_{1/2}$	[π rad]	
Commenti:		•			
				Page	1 of 2

3. Misurate ora le ampiezze V_{inj} e V_{outj} (vanno bene picco-picco) a diverse frequenze f_j . Dovete esplorare un vasto intervallo di frequenze, fino a 2-3 decadi, usando spaziature non regolari e registrando più di una dozzina di punti. Siete consigliati di misurare anche gli sfasamenti $\Delta \phi_j$ corrispondenti (magari non per tutti i punti, possibilmente accoppiando il canale dell'oscilloscopio in DC per le eventuali misure di sfasamento a "bassa" frequenza).

j	f _j []	V _{inj} []	V _{outj} []	$\Delta \phi_j [\pi \text{ rad}]$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				

- 4. Per alcuni valori di frequenza, date anche un'occhiata al segnale rappresentato nella visualizzazione X-Y dell'oscilloscopio (si attiva con un pulsante o ruotando la manopola della base dei tempi, a seconda del modello). Date una <u>breve</u> spiegazione di cosa si osserva scrivendola da qualche parte (per esempio, dietro al foglio del grafico).
- 5. Graficate il guadagno (o attenuazione) $A_j = V_{outj}/V_{inj}$ in funzione di f_j (scegliendo la rappresentazione più "efficace") e fate un best-fit dei dati secondo la funzione modello da scrivere nel riquadro qui sotto, nella quale siete invitati a considerare la resistenza interna r del generatore. Verificate "a occhio", cioè osservando il grafico, che A(f) abbia l'andamento previsto nella regione di transizione, cioè per f maggiore, o minore, di f_T (per il caso rispettivamente di passabasso, o passa-alto). Riportate tutti i commenti (accordo con le attese, eventuali discrepanze, risultati del best-fit e tutte le informazioni necessarie sul foglio del grafico.

Funzione modello usata per il best-fit:	Andamento atteso
A(f) =	(pendenza nella regione di transizione) :
	$A \sim $ [dB/decade]

6. <u>Alternative e facoltative</u>: in alternativa al grafico di sopra (o in aggiunta, se avete tempo), potete realizzare il <u>diagramma di Bode</u> del filtro costruito, individuando graficamente la corner frequency f_C ed eseguendo un best-fit lineare per i soli dati che seguono tale andamento. Inoltre, potete anche graficare lo sfasamento $\Delta \phi_j$ in funzione di f_j e farne un best-fit secondo l'opportuna funzione modello. Al solito, commenti, risultati, informazioni rilevanti vanno scritti sul foglio del, o dei, grafici.