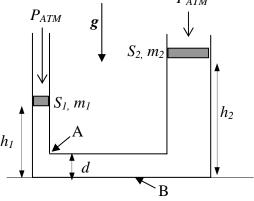

ESERCIZI DI FISICA GENERALE - nr. 20/07

1. Volete misurare la pressione atmosferica con un "barometro di Torricelli", che è realizzato prendendo una lunga provetta ed immergendola completamente in una bacinella contenente un liquido di densità ρ_m . Dopo che la provetta è stata completamente riempita di liquido, essa viene estratta facendo in modo che resti sempre piena (ad esempio, tappandone l'estremità). A questo punto, essa viene re-immersa parzialmente nella bacinella mantenendola in direzione verticale, con la sua estremità aperta (stappata!) sotto il pelo del liquido (vedi figura).

a) Indicando la pressione atmosferica con P_{ATM} , quanto vale la pressione P al punto A indicato in figura?


 $P = \dots P$

b) Quant'è l'altezza *h* della colonna di liquido nella provetta? [Notate che la particolare operazione di riempimento che avete eseguito garantisce che nella parte superiore della provetta c'è vuoto, cioè la pressione in questa zona è trascurabile]

c) Numericamente, quanto vale l'altezza h_A , h_M , h_E nel caso utilizziate come liquido rispettivamente acqua (densità $\rho_A = 1.00 \times 10^3 \text{ kg/m}^3$), mercurio (densità $\rho_M = 13.6 \times 10^3 \text{ kg/m}^3$), etanolo (densità $\rho_E = 0.800 \times 10^3 \text{ kg/m}^3$)? [Supponete $P_{ATM} = 1.01 \times 10^5 \text{ Pa e prendete } g = 9.80 \text{ m/s}^2$]

 $h_A = \dots m$ $h_M = \dots m$ $h_E = \dots m$

2. Il sistema in figura è costituito da due tubi aperti di sezione rispettivamente $S_I = 5.0 \text{ cm}^2 \text{ ed } S_2 = 10 \text{ cm}^2 \text{ che sono in collegamento fra di loro. Essi sono riempiti di un fluido ideale ($ **incomprimibile** $) di densità <math>\rho_m = 5.0 \times 10^3 \text{ Kg/m}^3 \text{ e sono tappati, come in figura, da due tappi scorrevoli verticalmente di massa rispettivamente <math>m_I = 10 \text{ kg ed } m_2 = 15 \text{ kg. I tappi si trovano rispettivamente alle altezze <math>h_I$ ed h_2 rispetto alla quota di riferimento indicata in figura, ed il sistema, nelle condizioni di h_I figura, si trova in equilibrio statico. [Supponete trascurabili tutte le forme di attrito nel sistema, ad esempio l'attrito di scorrimento dei tappi, ed usate il valore $g = 9.8 \text{ m/s}^2$ per il modulo dell'accelerazione di gravità]

a) Sapendo che il tratto di congiunzione tra i due tubi ha sezione di diametro d = 10 cm (vedi figura) e che $h_I = 50$ cm, quanto vale la pressione P al punto A indicato in figura? [Ricordate che i tappi sono a contatto con la pressione atmosferica, il cui valore supponete sia $P_{ATM} = 1.0 \times 10^5$ Pa]

P = Pa

b) Quanto vale l'altezza h_2 ? $h_2 = \dots = \dots = m$

c) Se a questo punto si aggiunge un corpo di massa $M_1 = 5.0$ kg sul tappo 1, quale dovrà la massa M_2 da aggiungere sul tappo 2 per salvaguardare l'equilibrio (nelle stesse condizioni di figura)? $M_2 = \dots = \dots$ Kg

3. Avete un blocco di lega metallica di forma cubica con spigolo d=10.000 cm. La densità di massa della lega è $\rho=5.0 \times 10^3$ kg/m³. Inizialmente il blocco si trova alla temperatura $T_0=25.000$ °C e viene quindi portato, poggiandolo su un fornello, alla temperatura finale $T_I=275.000$ °C; ovviamente in tutte le fasi del processo esso si trova sempre a contatto con la pressione atmosferica, che vale $P_{ATM}=1.0 \times 10^5$ Pa.

a) Sapendo che il coefficiente di dilatazione termica **lineare** vale $\lambda = 2.000 \times 10^{-5} \text{ } 1/^{0}\text{C}$, quanto vale la lunghezza d' dello spigolo del blocco quando questo si trova alla temperatura T_{I} ?

d' = m

	b)	Quanto vale il volume V' alla temperatura T_I ? $V' = \dots = \dots = m^3$
	c)	E quanto vale il coefficiente di dilatazione termica volumica λ_V ? [Dimostrate che è, "al primo ordine", $\lambda_V \sim 3\lambda$] $\lambda_V = \dots \sim 1/{}^0C$
	d)	Quanto vale il lavoro L fatto dal blocco durante la sua espansione? [Ricordate che la pressione rimane in pratica costantemente pari a quella atmosferica] $L = \dots $ J
	e)	Supponendo che il materiale abbia calore specifico $c=2.0~{\rm J/(Kg~^0C)}$, quanto vale il calore Q che lui ha acquisito nel processo? Confrontatelo con $L!$ $Q=\ldots$ J
4.	ato	pponete che l'aria sia costituita da molecole di azoto (massa $M = 28.0$ u.m.a., cioè unità di massa mica – prendete 1 u.m.a ~ 1.6×10^{-27} kg). Pesate una quantità di aria pari a $m = 4.48$ g e la mettete in recipiente deformabile. Quanto vale il numero di moli (o grammo-moli, o grammo-molecole, per noi sono più o meno sinonimi) n del vostro campione? E qual è il numero N di molecole che lo costituiscono? [Ricordate
		il numero di Avogadro, $N_{AV} = 6.02 \times 10^{23}$]. $n = \dots = \dots = \dots$ moli $N = \dots = \dots$
	b)	Considerate ora il vostro campione di aria come un gas perfetto . Supponendo che esso occupi un volume (quello del recipiente!) $V_0=10.0$ l, quanto vale la densità di massa ρ_0 ? E se lo riscaldate, aumentandone la temperatura di $\Delta T=100~^{0}$ C, quanto viene a valere la densità ρ ? [Considerate la dilatazione termica del gas e supponete irrealisticamente che il recipiente non abbia alcun ruolo !] $\rho_0=\ldots$ kg/m^3 $\rho=\ldots$ kg/m^3
	c)	Sapendo che il volume V_0 era occupato quando il gas si trovava a temperatura $\theta_0 = 26.8$ 0 C, quanto vale le pressione P_0 del campione di gas? [La costante dei gas perfetti vale $R = 8.314$ J/(K mole)] $P_0 = \dots$ Pa
	d)	Tenendo conto che, per un gas perfetto biatomico quale quello che state considerando, il "numero di gradi di libertà" vale 5, quanto valgono energia cinetica media $\langle E_K \rangle$ e velocità media $\langle v \rangle$ di ogni singola molecola di "aria"? [Ricordate che la costante di Boltzmann vale $k_B = R/N_{AV} = 1.380 \times 10^{-23}$ J/K, e considerate il gas alla temperatura θ_0] $\langle E_K \rangle = \dots \qquad \qquad$