ESERCIZI DI FISICA GENERALE – nr. 6/07

Ι.	Una massa puntiforme $m=2.5$ kg giunge alla base di un piano inclinato di altezza $h=3.0$ m e lunghezza $l=5.0$ m con una velocità di modulo $v_0=9.8$ m/s (vedi figura). Il piano presenta un coefficiente di attrito dinamico $\mu_D=0.50$. [Usate $g=9.8$ m/s² per il modulo dell'accelerazione di gravità] a) Quando la massa si trova sul piano inclinato, quanto valgono le componenti N_X ed N_Y della reazione vincolare espresse nel sistema di riferimento indicato in figura? $N_X=\dots N - mg \sin\theta \cos\theta = -mg (1-(h/l)^2)^{1/2} (h/l)$ $\sim -11 N$ [con θ si indica l'angolo del piano inclinato rispetto all'orizzontale, ed il risultato esce proiettando la reazione vincolare, $mg\cos\theta$, lungo X ed usando bene la trigonometria ed il teorema di Pitagora]
	$N_Y = \dots N \qquad mg \cos^2\theta = mg(1-(h/l)^2) \sim 16 \text{ N}$ [idem]
	b) Quanto vale la distanza L che la massa percorre sul piano prima di arrestarsi? $L = \dots \qquad m \qquad v_0^2/(2 g (sin\theta + \mu_D cos\theta)) = 4.9 m$ [la legge oraria del moto sul piano è $s(t) = v_0 t + (a/2)t^2$, con $a = -gsin\theta - \mu_D gcos\theta$, da cui il risultato]
	c) Sapendo che il coefficiente di attrito statico vale $\mu_S = 1.6\mu_D = 0.80$, cosa succederà alla massa subito dopo essersi fermata?
	rimane ferma \Box non si può dire \Box scende verso il basso $Spiegazione \ sintetica \ della \ risposta:$ la forza di attrito, $mg\mu_Scos\theta$, è maggiore della forza che tende a far scendere la massa, che vale $mgsin\theta$
2.	Osservate che un oggetto lanciato su un piano scabro con velocità $v_0 = 9.8$ m/s si ferma dopo aver scivolato per un tratto $d = 9.8$ m. Quanto vale il coefficiente di attrito dinamico μ_D ?
	\square . 1.0 $X\square$ 0.5 \square non si può dire <i>Spiegazione sintetica della risposta:</i>
3.	Da alcune misure sperimentali, osservate che l'andamento temporale della velocità di una certa particella di massa m in moto unidimensionale è ben descritto dalla legge $v(t) = v_0 (1 - e^{-At})$, con $A > 0$. a) Questa legge potrebbe indicare che la particella si muove, partendo da ferma, in un fluido viscoso? \square . no \square . sì \square . boh
	b) Se avete risposto "sì" al quesito precedente, e supponete che il moto in questione avvenga per effetto dell'accelerazione di gravità g , quanto vale il coefficiente di attrito viscoso β ? $\beta = \dots \qquad A m$
1.	Una massa $m = 200$ g è appesa, attraverso una molla di massa trascurabile e costante elastica $k = 2.00 \times 10 \text{ N/m}$, ad un solaio (g vale, in modulo, 9.80 m/s^2). a) Detto z un asse verticale che punta verso il basso, con origine nella posizione di riposo della molla, scrivete l'equazione del moto della massa: (a_Z indica l'accelerazione lungo l'asse z) $a_Z = d^2 z(t)/dt^2 = \dots \qquad g-(k/m)z(t)$
	b) Quanto vale la posizione di equilibrio stabile z_{EQ} della massa? $z_{EQ} = \dots = \dots = \dots = \dots = \dots = mg/k = 9.80 \text{ cm}$
	c) Quanto vale la pulsazione ω del moto oscillatorio che vi aspettate che la massa compia? $\omega = \dots = \text{rad/s}$ $\sqrt{k/m} = 10 \text{ rad/s}$

d)	Scrivete la legge oraria del moto $z(t)$ supponendo che all'istante iniziale $t=0$ "lasciate libera di andare" la massa da $z=0$ con velocità $v_Z=0$ (formalmente, dovete trovare la soluzione dell'equazione differenziale al secondo ordine da voi scritta al punto a) con le condizioni al contorno specificate per posizione e velocità!) $z(t)=\dots \qquad z_{EQ}(1-\cos(\omega t))$
alla Su _]	ete una massa m collegata, tramite una molla di costante elastica k , a sommità di un piano inclinato con angolo θ (vedi figura). pponendo che non vi siano attriti, quanto vale, all'equilibrio , llungamento Δl della molla (in valore assoluto)? $\Delta l = \dots \qquad (mgsin\theta)/k$
a)	Supponete ora che, per qualche ragione, il piano inclinato presenti un attrito statico, con coefficiente μ_S . Qual è il massimo valore del modulo della forza di attrito statico $F_{A,S}$ subita dalla massa? $F_{A,S} = \dots \qquad (mgcos\theta)\mu_S$
	In queste condizioni, si osserva che potete spostare (molto lentamente) la massa verso la base del piano inclinato e mantenere una situazione di equilibrio. Quanto vale la massima elongazione della molla Δl ' che potete raggiungere in questo modo (in valore assoluto)? $\Delta l' = \dots \qquad (mg(\sin\theta + \mu_S \cos\theta))/k \qquad [allungando la blla, la massa tenderebbe a "risalire" il piano per effetto della forza elastica, ma la forza di attrito$
	tico si oppone a questo moto]
c)	Se allungate ulteriormente la molla di un tratto Δx (in valore assoluto) rispetto al valore $\Delta l'$ della risposta precedente, e lasciate andare liberamente la massa, osservate che essa inizia a "risalire" il piano. Usando come asse x la direzione inclinato stesso (orientato verso la sommità del piano e con l'origine nel punto in cui la molla ha lunghezza di riposo), come si scrivono l'equazione del moto della massa e le condizioni iniziali x_0 e v_0 ? [indicate con $a(t)$ l'accelerazione della massa lungo questo asse] $a(t) = \dots -gsin\theta + (k/m)x(t) \text{[c'è solo attrito statico, e non agisce quando la massa si muove!]}$
	$x_0 = $ $- (\Delta l' + \Delta x)$ [per la scelta dell'origine!] $v_0 = $ 0 [dal testo]
d)	Scrivete una soluzione particolare x_P per l'equazione del moto (possibilmente, la più semplice!) $x_P = \dots \qquad mgsin\theta/k$ [si ottiene per $a = 0$]
e)	A questo punto, ricordando che un'espressione per la soluzione generale di un'equazione differenziale del secondo ordine omogenea è del tipo $Acos(\omega t + \Phi)$, con A , ω , e Φ da determinare, come si scrivono la legge oraria del moto $x(t)$ e della velocità $v(t)$? [ricordate anche che $(dcos\alpha/dt) = -(d\alpha/dt) sin\alpha$]
	$x(t) = \dots \qquad A\cos(\omega t + \Phi) + x_P$
	$v(t) = \dots - A\omega sin(\omega t + \Phi)$ con: $\omega = \sqrt{(k/m)}$; inoltre dalle condizioni iniziali si ottiene: $\Phi = 0$;
	$A = x_0 - x_P = \text{etc. etc.}$
f)	Quanto vale la massima coordinata x_{MAX} raggiunta dalla massa nel suo moto? (ricordate che l'asse x è diretto verso la sommità del piano)
	$x_{MAX} = \dots - A + x_P = -x_0 + 2x_P = \text{etc. etc.}$ [si ottiene imponendo $cos(\omega t_{MAX}) = -1$]
g)	Il moto è sicuramente periodico? Commentate:
	dipende se la forza (elastica + proiezione della forza peso) risentita dalla massa quando questa si trova nella posizione x_{MAX} è maggiore o minore della massima forza di attrito: se è minore, la massa si ferma e il moto non è periodico!]

5.