Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 10

1.	pos	rete tre masse puntiformi, $m_1 = 1.25$ Kg, $m_2 = 750$ g, $m_3 = 250$ g, che si trovano nelle seguenti sizioni spaziali (espresse vettorialmente e riferite ad un dato sistema cartesiano): $r_1 = (-20, 40, -40)$ a; $r_2 = (20, 0, -40)$ cm; $r_3 = (40, 20, 0)$ cm. Qual è, vettorialmente, la posizione del centro di massa r_{CM} ? $r_{CM} = (\dots, \dots, \dots)$ m
	b)	Quanto vale il momento di inerzia I per una rotazione rispetto ad un asse coincidente con l'asse Z del sistema di riferimento assegnato (e quindi passante per l'origine del riferimento)? $I = \dots = Kg \text{ m}^2$
	c)	Quanto vale il momento di inerzia I' per una rotazione rispetto ad un asse parallelo all'asse Z ma passante per la massa m_I ? $I' = \dots Kg m^2$
2.	ma è i	rete una barretta sottile di materiale disomogeneo, di sezione S , lunghezza totale l e densità di assa $\rho(x)$ che varia lungo l'asse secondo la legge $\rho(x) = \alpha x^2$, dove x è la distanza da un estremo e α una costante opportunamente dimensionata in modo che $\rho(x)$ si misuri in Kg/m^3 (α si deve identemente misurare in Kg/m^5).
		Tenendo conto che la densità dipende solo da x , come potete esprimere una densità lineare di massa $\lambda(x)$, con dimensioni di una massa per unità di lunghezza (Kg/m)? $\lambda(x) = \dots$
	b)	Quanto vale la massa m della barretta? $m = \dots$
	c)	Qual è la coordinata x_{CM} del centro di massa? (Supponete di disporre la barretta lungo l'asse X di un sistema di riferimento cartesiano, con la sua origine coincidente con l'origine del sistema) $x_{CM} = \dots$
	d)	Quanto vale il momento di inerzia I per una rotazione rispetto ad un asse coincidente con l'asse Z del sistema di riferimento assegnato (e quindi passante per l'origine del riferimento)? $I = \dots$
	e)	Quanto vale il momento di inerzia I_{CM} per una rotazione rispetto ad un asse parallelo all'asse Z ma passante per il centro di massa ? $I_{CM} = \dots$
	f)	Provate a "generalizzare" il risultato precedente, cioè a trovare un legame tra I ed I_{CM} che coinvolga la massa del corpo, m , e la distanza D tra l'asse a cui si riferisce il momento di inerzia I e il centro di massa: $I = \dots$
3.	cas	rete un sottile anello circolare fatto di un materiale omogeneo con densità di massa ρ (in questo so è ovviamente uniforme). Indicate con r il raggio dell'anello, con Δr la sua "larghezza" (cioè il o spessore in direzione radiale) e con Δs la sua "altezza" (cioè il suo spessore in direzione assiale). Quanto vale, in prima approssimazione, il volume ΔV dell'anello? $\Delta V \sim \dots$
	b)	Quanto vale, in prima approssimazione, la massa Δm dell'anello? $\Delta m \sim \dots$
	c)	Supponete ora di avere tanti di questi anelli , di raggio variabile tra $r = 0$ ed $r = R$, tutti di spessore Δr molto piccolo, ed immaginate di infilarli tutti uno dentro l'altro in modo che i loro centri

Francesco Fuso - tel 050 2214305 - e-mail: fuso@df.unipi.it - web page: http://www.df.unipi.it/~fuso/dida

	coincidano. Il risultato della vostra operazione immaginaria sarà la costruzione di un disco omogeneo di raggio R . Quanto vale la massa Δm ' di questo disco? $\Delta m' = \dots$
d)	Quanto vale il momento di inerzia ΔI di questo disco per una rotazione attorno al suo asse? $\Delta I = \dots$
e)	A questo punto, supponete di avere tanti di questi dischi , di raggio variabile tra $r=0$ ed $r=R$, tutti di spessore Δs molto piccolo, ed immaginate di impilare dischi di raggio via via decrescente tutti uno sopra l'altro in modo che i loro centri coincidano. Il risultato della vostra operazione immaginaria sarà la costruzione di una semisfera omogenea di raggio R . Se dal punto di vista operativo decidete di impilare i dischi lungo l'asse Z , partendo, con il disco di raggio R , dal piano $z=0$, qual è la relazione (puramente geometrica) tra raggio $r(z)$ del disco e quota z a cui questo disco si trova (vedi figura)? $r(z)=\dots$
f)	Quanto vale la massa Δm '' di questa semisfera? Δm '' =
g)	E ora che siamo "esperti" di calcolo di integrali di volume, quanto vale il momento di inerzia I per la semisfera in rotazione attorno all'asse Z ? $I = \dots$
h)	Ragionando come sopra, quanto vale la coordinata z_{CM} del centro di massa?