Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 18

1.	dif	filo di lega di rame, di lunghezza $l = 2.0$ m e sezione $S = 0.10$ mm ² , è collegato ad un generatore di ferenza di potenziale ideale $V = 4.0$ V. Sapendo che la corrente che attraversa il filo vale $I = 10$ A, quanto vale la resistività ρ della lega che costituisce il filo? [Esprimete il risultato in ohm m]
		$\rho = \dots - \text{ohm m}$
	b)	Quanto vale la potenza W dissipata dal filo? $W = \dots = \dots$ W
	c)	Supponendo che la corrente interessi in modo omogeneo ed uniforme l'intera sezione del filo quanto vale in modulo la densità di corrente elettrica J ? $J = \dots = A/m^2$
	d)	Riferendosi al "modello di Drude" per la conducibilità (classica) in un conduttore, supponendo che la corrente sia dovuta al movimento di elettroni di massa $m = 9.0 \times 10^{-31}$ Kg e carica $e = -1.6 \times 10^{-19}$ C che sono presenti con una densità $n = 9.0 \times 10^{28}$ elettroni/m³ all'interno del filo, quanto vale il tempo t che intercorre tra due "urti" successivi degli elettroni con il reticolo cristallino della lega? $\tau = \dots \sim \dots \sim \dots \sim \dots \sim \dots \sim \dots$
2.	V_0 in vie oh	generatore di differenza di potenziale reale può essere lematizzato come un generatore ideale di differenza di potenziale $= 5.00 \text{ V}$ dotato di una (piccola, ma non nulla) resistenza interna serie $R_i = 2.00$ ohm, come rappresentato in figura. Al generatore ne collegato un carico resistivo, costituito da un resistore $R = 200$ m. Quanto vale la corrente I che scorre nel circuito? $I = \dots = \dots A$
	b)	Quanto vale la differenza di potenziale V ai capi del carico (cioè del resistore R)? $V = \dots V$
	c)	Quanto vale la potenza W_i dissipata "internamente" dal generatore, cioè a causa della presenza della resistenza interna?
		$W_i = \dots W$
3.	inc qua	ete a disposizione un generatore di differenza di potenziale continua $V_0 = 220$ V e due lampadine ad andescenza di potenza nominale $W_0 = 100$ W (questa potenza è quella dissipata da una lampadina ando essa viene alimentata alla tensione V_0). Quanto vale la resistenza R di ogni lampadina? $R = \dots $ ohm
	b)	Quanto vale la resistenza totale delle due lampadine se queste vengono collegate in serie, R_S , o in parallelo, R_P ? $R_S = \dots = \dots = \dots = \dots = \dots$ ohm $R_P = \dots = \dots = \dots = \dots = \dots$
	c)	Supponendo che il generatore sia ideale , cioè che fornisca la differenza di potenziale V_0 a prescindere dal carico applicato, quanto vale la potenza totale dissipata nei due casi (serie e parallelo)? Supponendo che, ragionevolmente, la potenza di irraggiamento luminoso sia proporzionale alla potenza elettrica dissipata, come colleghereste le lampadine per avere più luce? $W_S = \dots = $

	d)	Considerate ora che il generatore produca tensione alternata , cioè tale che la differenza di potenziale $V(t)$ da esso fornita sia funzione periodica del tempo t secondo la legge $V(t) = V_0 \cos(\omega t)$ con $\omega = 2\pi/50$ rad/s (è la corrente elettrica distribuita dall'enel). Sapendo che il valore medio di una funzione periodica generica $f(t)$ è, per definizione, $\langle f \rangle = (1/T) \int f(t) dt$, dove l'integrale è calcolato su un periodo T , quanto vale la potenza media $\langle W \rangle$ dissipata da una singola lampadina? $\langle W \rangle = \dots$
4.	R_1 col	figura rappresenta un circuito elettrico composto da un generatore differenza di potenziale $V = 10.0$ V e quattro resistori (di resistenza = 100 ohm, $R_2 = 1.00$ Kohm, $R_3 = 500$ ohm, $R_4 = 600$ ohm), legati tra loro come da schema. Quanto vale la corrente I che scorre nel circuito? $I = \dots = \dots$ A
	b)	Quanto vale la "caduta di tensione" V_I sulla resistenza R_I (cioè la differenza di potenziale ai suo capi)? $V_I = \dots $ V
5.	lun car	resistore elettrico è costituito da un cilindro omogeneo di grafite di sezione di base $S=2.0 \text{ mm}^2$ e aghezza $l=1.0 \text{ cm}$, al cui interno è presente, nelle condizioni di funzionamento del resistore, un mpo elettrico uniforme E diretto lungo l'asse. Sapendo che la corrente che attraversa il resistore vale $I=100 \text{ mA}$ e che la conducibilità della grafite vale $\sigma=2.5 \text{x} 10^4 \text{ l/(ohm m)}$, quanto vale il modulo del campo elettrico E ? [Esprimete i campo in V/m, che costituiscono una buona unità di misura nel sistema mKs] $E=\dots$ V/m
	b)	Quanto vale il lavoro L_e fatto dalle forze del campo elettrico per spostare un singolo elettrono attraverso il resistore? [Prendete $e = -1.6 \times 10^{-19}$ C per la carica dell'elettrone, e aggiustate i segn considerando cosa succede "fisicamente"] $L_e = \dots$ J
	c)	Quanto vale il numero N di elettroni che attraversano la sezione del cilindro in un secondo? $N = \dots = \text{elettroni/s}$
	d)	Quanto vale la potenza W associata al lavoro delle forze elettriche? $W = \dots = \dots = W$
	e)	Quanto vale la densità di potenza w dissipata nell'unità di volume del resistore? Dimostrate che la sua espressione può essere data dal prodotto $w = \sigma E^2$. [Densità di potenza significa potenza diviso per volume occupato dal mezzo resistivo] $w = \dots = W/m^3$