Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 8

1.	vie	una partita di biliardo, la palla numero 1, che ha massa $m = 100$ g, si trova ferma sul panno. Essa me colpita dalla palla numero 2, che ha la stessa massa m , e, subito prima dell'urto, ha velocità $v_2 = m/s$. Supponendo che l'urto tra le due palle sia totalmente elastico , quali grandezze si conservano nel processo? (segnate tutte quelle che si conservano) \square Energia cinetica della palla 1 \square Energia cinetica della palla 2 \square Quantità di moto della palla 1 \square Quantità di moto totale
	b)	Sapendo che, dopo l'urto, la direzione di moto delle due palle è la stessa della palla numero 1 prima dell'urto (l'urto si dice centrale ed il problema diventa, di fatto, unidimensionale), quanto valgono la quantità di moto totale P e l'energia cinetica totale E del sistema subito dopo l'urto? $P = \dots \qquad \qquad = \dots \qquad \text{Kg m/s} m v_2 = 0.1 \text{Kg m/s} E = \dots \qquad \qquad = \dots \text{J} (m/2) v^2_2 = 0.05 \text{J}$
	c)	Dette V_1 e V_2 le velocità (incognite) delle due palle subito dopo l'urto, come si scrivono le due equazioni necessarie per determinarne il valore? Prima equazione: $v_2 = V_1 + V_2$ [dalla cons. della quantità di moto totale] Seconda equazione: $v_2^2 = V_1^2 + V_2^2$ [dalla cons. dell'energia cinetica totale]
	d)	E quanto valgono, allora, le velocità delle due palle, V_1 e V_2 subito dopo l'urto? $V_1 = \dots = m/s$ $v_2 = 1.0 \text{ m/s}$ $V_2 = \dots = m/s$ 0 [le palle si "scambiano" le velocità!]
un	e) sista	Supponendo che la durata dell'urto sia $\Delta t = 10^{-3}$ s, quanto valgono le forze impulsive $F_{1,2}$ ed $F_{2,1}$ esercitate dalla palla 2 sulla palla 1 e viceversa? $F_{1,2} = \dots = $
	f)	Supponete, ora, che l'urto non sia centrale , cioè che, ad esempio, la velocità V_I formi un angolo $\theta_1 = 45$ gradi rispetto alla direzione della velocità iniziale v_2 (notate che ora il problema è diventato bidimensionale, ed occorre usare dei vettori). Come si scrivono le equazioni di conservazione in questo caso? (chiamate asse X la direzione della velocità iniziale v_I e notate che, ora, potete scrivere tre equazioni invece che due!) Prima equazione: $v_2 = V_{I,X} + V_{2,X} = V_I \cos(\pi/4) + V_{2,X}$ [dalla cons. della quantità di moto totale lungo X] Seconda equazione: $0 = V_{I,Y} + V_{2,Y} = V_I \sin(\pi/4) + V_{2,Y}$ [dalla cons. della quantità di moto totale lungo Y] Terza equazione: $v_2^2 = V_1^2 + V_2^2$ [dalla cons. dell'energia cinetica totale, come prima!]
	g)	In simili condizioni, siete in grado di determinare completamente le velocità V_1 e V_2 ? \square Sì \square No Spiegazione sintetica della risposta:

	direzione X con una velocità V), mentre quella del cow-boy è $\mathbf{v} = (V, v)$. a) Quanto vale l'energia cinetica totale iniziale E_0 del sistema? $E_0 = \dots \qquad (M/2)V^2 + (m/2)(V^2 + v^2)$	
	b) Quanto vale vettorialmente la velocità V' del sistema dopo l'arrivo del cow-boy? $V'=(\ldots,\ldots,\ldots)$ ($V, mv/(m+M)$) [viene dalla conserquantità di moto nelle due direzioni]	vazione della
	Quanto vale la differenza di energia cinetica ΔE fra gli istanti subito dopo e subito p del cow-boy sulla diligenza? (indicate anche il segno di questa differenza) $\Delta E = \frac{((M + m)/2) (V^2 + m^2 v^2/(M + m)^2)}{mMv^2/(2(M+m))}$ [il segno è negativo, cioè dopo l'"urto" l'energia cinetica dimini	$-E_0 = -$
	d) E, supponendo che l'evento di "arrivo del cow-boy" abbia una durata Δt , vettorialmente la forza F di interazione fra diligenza e cow-boy? $F = (\dots, \dots, \dots, \dots)$ $(0, -mMv/((m+M)\Delta t))$ [viene dalla quantità di moto del solo cow-boy]	
3.	Un atomo di massa <i>m</i> (che fa parte di un gas contenuto in un recipiente a temperatura ass da zero, ed è quindi dotato di un moto casuale con velocità di modulo <i>v</i>) urta contro una (la parete del recipiente). Considerate il problema bidimensionale, usate un sistema di rit con l'origine nel punto di impatto tra atomo e parete, asse <i>X</i> diretto ortogonalmente alla parallelo alla parete (supposta piana). a) Supponendo che l'urto sia perfettamente elastico, e chiamando <i>v_X</i> e <i>v_Y</i> le componente) della quanto vale in valore assoluto la variazione della componente <i>X</i> (cioè or parete) della quantità di moto Δ <i>p</i> dell'atomo in seguito alla collisione? $\Delta p = \frac{ m(v_X + v_X) }{ m(v_X + v_X) } = \frac{2m v_X }{ m(t_X + v_X) } = \frac{1}{2m v_X } $ [infatti il componente ortogonale della velocità si inverte nell'urto, se questo è elastico]	parete rigida ferimento XX parete ed asse ponenti della togonale alla
	b) Supponete ora che ci sia un'altra parete di fronte alla precedente e parallela a questa, distanza l . Dopo l'urto con la prima parete, l'atomo viaggerà contro la parete di front tornerà di nuovo verso la prima parete: supponendo che il moto dell'atomo sia uniforme, quanto vale il tempo T necessario perché l'atomo ritorni sulla prima parete? $T = \dots 2 l/ v_X $	te, la urterà e rettilineo ed
	c) Quanto vale il numero n di urti compiuti dall'atomo sulla prima parete nell'unità o secondo, nel sistema mKs) e quanto il valore assoluto della variazione della quantità per unità di tempo per l'atomo in seguito agli urti con questa parete? $n = \frac{I/T = v_X /(2l)}{\Delta P} = \frac{\Delta p/T}{\Delta p/T} = \frac{m v_X ^2/l}{2} = 2 \frac{E_K/l}{l}$, essendo cinetica dell'atomo	ΔP di moto ΔP
	d) Potete commentare sulle dimensioni e sul significato della ΔP appena determinata un'anticipazione di un argomento di termodinamica!) le dimensioni sono quelle di una f	•
	nel tempo e il significato fisico è quello delle forze (medie) di pressione che il gas pareti del recipiente; notate che queste forze di pressione sono direttamente pall'energia cinetica (media) dell'atomo	esercita sulle
	Francesco Fuso – tel 050 2214305 – e-mail: fuso@df.unipi.it – web page: http://www.df.unipi.it/~	fuso/dida

2. In un film western, un cow-boy, di massa m, affianca una diligenza, di massa M, con il suo cavallo e ci salta sopra al volo. I dati del problema, per la soluzione del quale dovete considerare cow-boy e diligenza come corpi puntiformi liberi di muoversi su un piano XY, vi dicono che la velocità della diligenza subito prima dell'arrivo del cow-boy è V = (V, 0), (cioè la diligenza procede lungo la