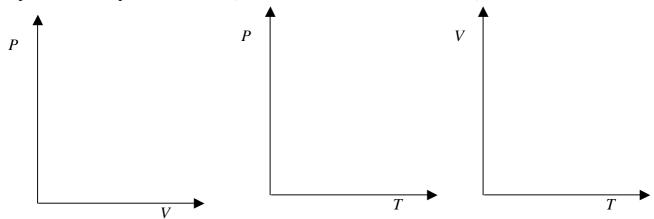
Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 15, 24/3/2005

1.	blo d'a sec	rete un blocco di alluminio di massa $m_A = 1.0$ Kg che si trova alla temperatura $T_A = 200$ 0 C, un occo di rame di massa $m_R = 2.0$ Kg che si trova alla temperatura $T_R = 100$ 0 C, ed un secchio acqua, dal volume $V = 20$ l, che si trova alla temperatura $T_0 = 20$ 0 C. Tuffate alluminio e rame nel ochio ed aspettate un po' di tempo in modo che il sistema complessivo arrivi all'equilibrio termico. Detti Q_A , Q_R e Q_0 i calori ceduti o assorbiti dai tre materiali nel processo, quale relazione deve sussistere tra loro supponendo trascurabili le perdite di calore verso l'esterno (pareti del recipiente isolate termicamente e/o processo così rapido che non c'è tempo perché il calore si disperda verso l'esterno)? $Q_A + Q_R + Q_0 = 0$
	b)	Sapendo che il calore latente di vaporizzazione dell'acqua vale $\lambda_E = 2.3 \times 10^6$ J/Kg (ovviamente alla temperatura di ebollizione, cioè $T_E = 100$ 0 C) e che il suo calore specifico sia $c_0 = 4.2 \times 10^3$ J/(Kg 0 C), vi aspettate che l'acqua vada in ebollizione? [Prendete per la densità in massa dell'acqua $\rho = 1.0 \times 10^3$ Kg/m³, e assumete che i calori specifici dell'alluminio e del rame siano rispettivamente $c_A = 900$ J/(Kg 0 C) e $c_R = 400$ J/(Kg 0 C) – notate che stiamo implicitamente supponendo che i calori specifici restino costanti in tutto l'intervallo di temperatura considerato, affermazione non molto ragionevole!]
	pos 9x	Diegazione sintetica della risposta: il calore che alluminio e rame issono fornire all'acqua supponendo che la loro temperatura diminuisca fino al punto di ebollizione dell'acqua vale $c_A m_A (T_A - T_E) + c_R m_R (T_R - T_E) = 10^4 \text{ J}$, mentre per portare l'acqua dalla temperatura T_0 al punto di ebollizione occorre una quantità di calore che vale, in modulo, $c_0 \rho V (T_E - T_0) = x10^6 \text{ J}$. Quindi si può ragionevolmente escludere che l'acqua possa andare in ebollizione.
	c)	Quanto vale la temperatura di equilibrio termico T del sistema?
	- /	$T = \dots = \dots = 0$ C $(c_A m_A T_A + c_R m_R T_R + c_0 \rho V)$ $(c_A m_A + c_R m_R + c_0 \rho V) = 23.1$ [si ottiene risolvendo la conservazione del calore scritta prima]
	d)	Quanto vale il calore Q_A scambiato dal blocco di alluminio nel processo? [Specificate il segno] $Q_A = \dots = J c_A m_A (T - T_A) = -159 \times 10^3 \text{ J}$
	e)	Supponendo ora che il materiale del blocco A abbia un calore specifico che varia con la temperatura secondo una legge del tipo $c_A(T)=c'T/T'$, con c' e T' costanti opportunamente dimensionate, come esprimereste il calore Q' scambiato da A nella trasformazione? [Supponete che le temperature iniziali e finali siano le stesse di prima. Per la soluzione, tenete presente che il calore specifico è praticamente costante per una variazione piccola, cioè infinitesima , di temperatura] $massa aggiunta grazie a Silvia - 14/4/05$ $Q' = \dots \qquad m_A(c'/T') \int T dT = m_A(c'/T') (T^2 - T_A^2)$
teтp	raf con i c J/() I c vaj a) Spi	una fonderia trovate un lingotto di ferro di massa $m_F = 20$ Kg e temperatura $T_F = 750$ °C. Per freddarlo, lo mettete a contatto con una massa $m_G = 10$ Kg di ghiaccio alla temperatura $T_G = -10$ °C ntenuta in una tinozza dotata di un coperchio a tenuta stagna e con pareti isolanti termicamente. Per alori specifici (supposti costanti) prendete: $c_G = 2.0 \times 10^3$ J/(Kg °C) per il ghiaccio, $c_A = 4.0 \times 10^3$ Kg °C) per l'acqua, $c_V = 2.0 \times 10^3$ J/(Kg °C) per il vapore acqueo, $c_F = 4.0 \times 10^2$ J/(Kg °C) per il ferro calori latenti siano: $\lambda_F = 3.0 \times 10^5$ J/Kg per la fusione del ghiaccio e $\lambda_V = 2.0 \times 10^6$ J/Kg per la porizzazione dell'acqua. Il ghiaccio nella tinozza si scioglierà completamente? \square sì \square no integazione sintetica della risposta: \square per portare il ghiaccio alla tura di fusione e per scioglierlo completamente occorre la quantità di calore $m_G c_G (T_{FUS} - T_G) + m_G \lambda_F = 3.2 \times 10^6$ J; quando il ferro diminuisce la sua ra fino alla temperatura di fusione del ghiaccio fornisce un calore pari a $m_F c_F (T_F - T_{FUS}) = 6.0 \times 10^6$ J.
1		
		Potrebbe il ghiaccio passare allo stato di vapore acqueo? sì


Spiegazione sintetica della risposta: per portare il ghiaccio (diventato acqua!) alla temperatura di ebollizione occorre un calore pari a m_G c_A ($T_{EBOLL} - T_{FUS}$) = 4.0×10^6 J. Come risulta dalla risposta alla domanda precedente, il ferro non ha calore sufficiente per questo processo.

c) Detti Q_G , Q_A , Q_F , Q_V i calori scambiati da ghiaccio, acqua, ferro, vapore acqueo (se presente!) e Q_{FUS} , Q_{VAP} i calori necessari per fondere il ghiaccio e fare vaporizzare l'acqua, come si scrive ill bilancio dei flussi di energia?

 $Q_G + Q_{FUS} + Q_A + Q_F = 0 = m_G c_G (T_{FUS} - T_G) + m_G \lambda_F + m_A c_A (T - T_{FUS}) + m_F c_F (T - T_F) = -m_G c_G T_G + m_G \lambda_F + m_G c_A T + m_F c_F (T - T_F)$, avendo notato che $m_a = m_G$ (la massa non cambia nel passaggio dallo stato solido a quello liquido) e che $T_{FUS} = 0$

d) Quanto vale la temperatura di equilibrio termico T del sistema? $T = \dots = \dots = 0$ $(m_G c_G T_G - m_G \lambda_F + m_F c_F T_F) / (c_A m_G + c_R m_R) = 58.3 \, ^{0}$ C [fosse venuta una $T > 100 \, ^{\circ}$ C ci saremmo dovuti preoccupare!]

3. I grafici sottostanti riportano sugli assi diverse combinazioni delle "variabili di stato" termodinamiche *P*, *V*, *T*. Disegnateci schematicamente sopra le curve rappresentative di trasformazioni a volume, pressione e temperatura costante (dette anche isocore, isobare, isoterme).

errori vari nei risultati numerici corretti grazie a Silvia - 14/4/05

- 4. Una quantità n=4.00 di moli di un gas perfetto monoatomico (ad esempio l'elio, che è ben approssimato da un gas perfetto) è contenuta in un recipiente **indeformabile** di volume V=20.0 l. Inizialmente il gas si trova alla temperatura $T_0=500$ K.
 - a) Quanto vale la pressione P_0 del gas? [Prendete R = 8.31 J/(K mole) per il valore della costante dei gas perfetti]

 $P_0 = \dots = \text{Pa}$ Pa $nRT_0 / V = 8.31 \times 10^5 \text{ Pa}$

b) Il gas subisce quindi un raffreddamento (reversibile) fino a raggiungere la temperatura $T_1 = 250 \text{ K}$. Quanto vale la pressione P_1 ?

 $P_1 = \dots = \text{Pa}$ Pa $P_0 T_1 / T_0 = 4.16 \times 10^5 \text{ Pa}$

c) Quanto vale la variazione di energia interna ΔU del gas? [Ricordate l'espressione del calore specifico molare c_V per un gas perfetto monoatomico!]

 $\Delta U = \dots$ $= \dots$ J $n c_V (T_1 - T_0) = n (3/2)R(T_1 - T_0) = (3/2)(P_1 - P_0)V = -3.12 \text{ KJ}$ [essendo $c_V = (3/2)R$]

- d) Quanto vale il calore Q scambiato dal gas nella trasformazione? [Specificate il segno!] $Q = \dots$ J $\Delta U = -3.12 \text{ KJ}$ [pirmo principio ed L = 0 per una isocora]
- e) Supponendo che il processo venga realizzato mettendo il gas a contatto con una macchina (frigorifera) che ha "potenza raffreddante" effettiva W = 10 W, quanto tempo Δt occorre perché esso sia realizzato? [Trascurate, ovviamente, ogni considerazione relativa al carattere reversibile del processo, che impone, ragionevolmente, che esso avvenga "lentamente" passando per infiniti stati di equilibrio]

 $\Delta t = \dots$ s $\frac{Q}{W} = 312 \text{ s}$