Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 2, 19/10/2004

1.	Un vettore velocità ha componenti (2.40, 1.39) m/s:in che direzione si svolge il moto? \Box fa un angolo di $\pi/3$ con l'asse x \Box fa un angolo di $\pi/3$ con l'asse y \Box non si può dire
2.	Che direzione ha la somma dei tre vettori con componenti, rispettivamente, (1, 2, 3), (-3, -2, -1), (2, 1, -1)?
3.	Un punto si muove in una data direzione dello spazio con velocità rettilinea ed uniforme, percorrendo una distanza di 100 mm in 4.0 s. Sapendo che le componenti della velocità lungo x e lungo y valgono rispettivamente 12 mm/s e 16 mm/s, quanto vale la componente z (a meno del segno!)? \Box 15 mm/s \Box 28 mm/s \Box 72 mm/s \Box non si può dire
4.	Un punto si muove nello spazio tridimensionale secondo le leggi: $x(t) = v t \sin(\mathbf{w}t)$ $y(t) = v t \sin(\mathbf{w}t + \mathbf{p/2})$ $z(t) = v t$ Che traiettoria percorre?
5.	Come si esprime in un sistema di <i>coordinate cilindriche</i> (R , q , z) il moto di cui al quesito precedente? (R , q , z) = ()
6.	Un punto nello spazio reale a tre dimensioni è individuato dalla terna di <i>coordinate sferiche</i> $R=6.0$ m, $\mathbf{q}=3\pi/4$, $\mathbf{f}=\pi/3$. Quanto valgono le coordinate cartesiane (x, y, z) del punto? $(x, y, z)=(\ldots, \ldots)$ m
7.	 In un modello semplificato (e classico) di un atomo, l'elettrone si muove in un'orbita circolare di raggio a₀ = 0.50 nm. a) Sapendo che la sua <i>velocità lineare</i> è diretta tangenzialmente e vale, in modulo, v = 6.28 x 10⁵ m/s, quanto vale la velocità angolare ω? ω =
	b) Quanto vale il numero f di orbite percorse dall'elettrone in un secondo? $f = \dots = \text{orbite/s}$
	c) Quali sono modulo, direzione e verso dell'accelerazione <i>a</i> ? <i>a</i> =
	d) Come si esprimono in <i>coordinate polari</i> la posizione $r(t)$, la velocità $v(t)$ e l'accelerazione $a(t)$ del punto? (Supponete che all'istante iniziale la "fase" costante sia $\theta_0 = 0$ e che il moto avvenga in senso antiorario). $r(t) = (\dots, \dots, \dots, \dots, \dots, \dots)$ $v(t) = (\dots, \dots, \dots, \dots)$
	$a(t) = (\dots, \dots)$

8.	pas din car avv gio	una partita di calcio, Totti, battendo una punizione, intende servire "sull'ala" Zambrotta, con un saggio raso terra (cosa che ci consente di considerare per il momento il problema a due nensioni, cioè sul piano del campo sportivo). Per descrivere il problema, usiamo un riferimento tesiano centrato sulla posizione da cui viene battuta la punizione, con l'asse y diretto verso la porta versaria, e l'asse x lungo la larghezza del campo sportivo. Inoltre approssimiamo come punti catori e pallone, e supponiamo trascurabili tutti gli effetti (ad esempio, gli attriti) non cificamente menzionati.
	a)	Supponendo che all'istante in cui Totti fa partire il pallone Zambrotta si trovi nella posizione x_{0Z} = 30 m, y_{0Z} = -10 m e che si stia movendo con velocità costante ed uniforme v_Z = 5 m/s diretta lungo l'asse y (si muove "sulla fascia"!), scrivete le leggi orarie del moto per il pallone e per Zambrotta (supponete che il pallone si muova con accelerazione uniforme e costante a con componenti a_{X} , a_{Y}): $x_P(t) = \dots$ $y_Z(t) = \dots$ $y_Z(t) = \dots$
	b)	Quanto vale l'angolo q tra asse x ed a affinché il pallone arrivi a Zambrotta quando questo si trova nella posizione $x_F = 30$ m, $y_F = 30$ m (vicino alla linea di fondo)?
	c)	$q = \dots$ rad Quanto vale l'istante t ' in cui il pallone arriva a Zambrotta? $t' = \dots = \dots m/s$
	d)	Quanto devono valere le componenti dell'accelerazione a_X ed a_Y perché il passaggio "riesca"? $a_X = \dots = \dots = m/s^2$ $a_Y = \dots = \dots = m/s^2$
	e)	Quanto vale la velocità v_P del pallone quando questo arriva a Zambrotta? $v_P = (\dots, m/s) = (\dots, m/s)$
	f)	A questo punto Zambrotta "crossa" dentro l'area di rigore. Per farlo, colpisce il pallone <i>mentre è in movimento con velocità uniforme v</i> _Z impartendogli una velocità $\mathbf{v'} = (-5.0, 0.0, 5.0)$ m/s (notate che Zambrotta intende calciare un pallonetto, cioè alza il pallone rispetto al suolo). Quanto vale la velocità $\mathbf{v''}$ del pallone rispetto al suolo (scrivete tutte le tre componenti!)? $\mathbf{v''} = (\dots, \dots, \dots) = (\dots, \dots)$ m/s
	g)	Sapendo che sul pallone agisce l'accelerazione di gravità diretta verso il basso e di modulo $g = 9.8$ m/s², quanto vale l'intervallo di tempo t '', se esiste , necessario perché il pallone, colpito dal suolo da Zambrotta, raggiunga la testa di Vieri, che salta fino a portare la sua testa all'altezza $h = 2.5$ m? t '' =
9.		punto si muove sul piano xy con le leggi $x(t) = Bt$ ed $y(t) = (A^2 - B^2 t^2)^{1/2}$. Scrivete l'equazione della traiettoria:
		$y(x) = \dots$
	b)	Sapete individuare di che tipo di traiettoria si tratta?
		•••••••••••••••••••••••••••••••••••••••