
Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 21, 17/5/2005

- 1. Una carica puntiforme q si trova al centro di una cavità sferica vuota ricavata all'interno di una sfera conduttrice; la cavità ha raggio a e la sfera ha raggio b, ed esse sono concentriche (vedi figura). Il sistema è in equilibrio
 - a) Supponendo che la sfera conduttrice cava sia **scarica**, cioè che non porti alcuna carica, quanto vale il campo elettrico E(r) (modulo) nelle tre regioni r < a, a < r < b, r > b?

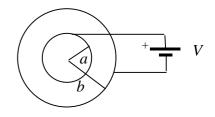
 $E(r) = \dots r < a \qquad q/(4\pi\epsilon_0 r^2)$ [carica puntiforme nell'origine!] $E(r) = \dots a < r < b \qquad 0$ [conduttore in equilibrio]

 $E(r) = \dots r > b$ $q/(4\pi\epsilon_0 r^2)$ [Gauss su una superficie sferica, tenendo conto che la carica contenuta nella superficie è q – la sfera cava è scarica!]

b) Quanto valgono le cariche q_a e q_b rispettivamente sulla superficie della cavità (r=a) e sulla superficie della sfera (r=b)?

 $q_a = \dots$ -q [basta applicare Gauss ad una superficie sferica di raggio compreso tra a e b, dove il campo è nullo, e notare che la carica contenuta al suo interno, che deve essere nulla, è data dalla somma algebrica $a+a_a$]

 $q_b = \dots \qquad q$ [la sfera deve essere globalmente scarica, per cui $q_a + q_b = 0$, da cui il risultato]


c) Supponendo invece che la sfera sia **collegata a terra** come schematizzato in figura, quanto verrebbe a valere il campo elettrico E'(r) nella regione esterna alla sfera, cioè per r>b? [Ricordate che collegare a terra significa porre a "potenziale nullo" un conduttore!]

 $E'(r) = \dots 0$ [altrimenti la superficie esterna della sfera verrebbe ad avere una differenza di potenziale rispetto all'infinito, cioè non sarebbe a potenziale nullo, dato che $-\int_b E'(r) dr$ è diverso da zero se E'(r) è diverso da zero]

d) Quanto vengono a valere, in questo caso, le cariche q'_a e q'_b rispettivamente sulla superficie della cavità (r=a) e sulla superficie della sfera (r=b)?

 $q'a = \dots -q$ [resta valido il ragionamento della risposta b)] $q'b = \dots 0$ [la sfera in questo caso deve portare una carica pari a -q per "annullare" nella regione r > b il campo creato dalla carica q, da cui il risultato]

2. Avete due gusci cilindrici di materiale conduttore coassiali tra loro, di raggio rispettivamente a e b, e lunghezza h (tutti e due, e, al solito, la lunghezza è così grande da poterli considerare praticamente infiniti). I due gusci sono collegati ad una batteria che genera una differenza di potenziale V (il guscio interno è collegato al polo positivo). Il sistema è all'equilibrio (cioè il condensatore è stato "caricato completamente"). La figura rappresenta il sistema visto dall'alto.

a) Come si esprime la dipendenza funzionale del campo E(r) (modulo) con il raggio r nella regione compresa tra le due armature cilindriche, cioè per a < r < b? [Dipendenza funzionale significa che dovete stabilire come va il campo con il raggio impiegando qualche parametro ancora incognito del problema, ad esempio la carica Q presente sull'armatura interna]

 $E(r) = \dots Q / (\epsilon_0 2\pi h r)$ [è il "solito" campo prodotto da una distribuzione uniforme di geometria cilindrica, e si ottiene con Gauss]

b) Ora, tenendo conto dei dati del problema, quanto vale la carica *Q* presente sull'armatura interna (quella di raggio *a*)? [Il dato che vi consiglio di impiegare è la differenza di potenziale!!]

 $Q = \dots$ $\epsilon_0 \ 2\pi h \ V / ln(b/a)$ [viene calcolando la differnenza di potenziale tra a e b e ponendola pari a V. In pratica si usa la $V = -\int_a^b E(r) \ dr$, usando la dipendenza funzionale del campo derivata nella risposta a). Non lo abbiamo detto esplicitamente, ma ovviamente il campo è radiale e, come si vede dalla risposta a), anche **non** uniforme benché nella regione tra le armature non ci siano cariche di volume (dipende dalla geometria cilindrica: fosse stato un condensatore ad armature piane il campo sarebbe stato uniforme: riflettete!]

c) Quanto valgono le **densità superficiali** di carica σ_a e σ_b sulle due armature? Francesco Fuso – tel 050 2214305 – e-mail: fuso@df.unipi.it – web page: http://www.df.unipi.it/~fuso/dida

		$\sigma_a = \dots \qquad Q/(2\pi h \ a)$ [la densità di carica è uniforme per invarianza rotazionale del problema, e il risultato si ottiene dividendo la carica per la superficie del guscio] $\sigma_b = \dots \qquad -Q/(2\pi h \ b)$ [come sopra, notando che sull'armatura esterna si
		accumula una carica uguale ed opposta a quella dell'armatura interna – il condensatore deve essere globalmente "scarico"]
	d)	Quanto vale la capacità C del condensatore?
		$C = \dots \qquad Q/V = \varepsilon_0 \ 2\pi h \ / \ ln(b/a)$ [per definizione]
	e)	Quanto vale l'energia elettrostatica U_E accumulata nel condensatore? $U_E = \dots \qquad CV^2/2 = Q^2/(2C) = \epsilon_0 \frac{2\pi h}{V^2} \frac{V^2}{(2\ln(b/a))}$
	f)	Nel processo di carica del condensatore, che si suppone sia stato compiuto in precedenza, il generatore di differenza di potenziale ha eseguito un certo lavoro L_G . Se si suppone di suddividere il processo di carica, che avrà richiesto un certo tempo, in tanti intervalli infinitesimi in ognuno dei quali una carica infinitesima d q viene "portata sulle armature", quanto vale il lavoro infinitesimo d L_G associato ad ogni intervallino? [Suggerimento: ricordate il legame tra differenza di potenziale e lavoro delle forze del campo] $dL_G = \dots \qquad V dq = (q/C) dq \qquad \text{[infatti il generatore compie su una carica } dq$ un lavoro pari a V d q ; notate che, nel processo di carica, la differenza di potenziale tra le armature non è costante, e può convenientemente essere espressa come q/C (non è costante perché q aumenta fino al valore Q che avrà all'equilibrio]
	g)	Quanto vale il lavoro complessivo L_G fatto dal generatore per completare la carica del condensatore? $L_G = \dots \int_0^Q (q/C) \mathrm{d}q = Q^2/(2C)$ [viene da quanto affermato qui sopra. Notate che $L_G = U_E$, come deve essere per ragioni di bilancio energetico]
3.	dis cor car arn	condensatore piano parallelo è formato da due armature di superficie $S=10~\rm cm^2$ separate da una tanza $d=0.10~\rm mm$. La regione tra le armature è riempita completamente da un materiale dielettrico n costante relativa (incognita) ε_R . Il condensatore si trova inizialmente in condizioni completamente iche (il processo di carica è stato completato in precedenza), e la differenza di potenziale tra le nature vale $V_0=100~\rm V$. Come si esprime la capacità C del condensatore in funzione dell'incognita ε_R e dei parametri geometrici del problema? [Trascurate gli "effetti ai bordi". Nota: qui non dovete dare una risposta
		numerica, ma solo scrivere, o calcolarvi, l'espressione della capacità] $C = \dots \qquad \qquad$
	b)	Per scaricare il condensatore usate cortocircuitate le sue armature attraverso una resistenza $R=1.0$ Mohm ed osservate che il "tempo caratteristico di scarica" vale $\tau=8.8$ ms. Quanto vale la costante dielettrica relativa ϵ_R del dielettrico? [Usate il valore $\epsilon_0=8.8 \times 10^{-12}$ F/m per la costante dielettrica del vuoto] $\epsilon_R=\dots=\dots=\frac{d\tau/(\epsilon_0SR)=100}{d\tau/(\epsilon_0SR)=100}$ [viene da $\tau=RC$]
	c)	Quanto vale l'energia totale U_J dissipata dalla resistenza per effetto Joule durante l' intero processo di scarica? $U_J = \dots = \dots $ J $U_E = CV_0^2 / 2 = 8.8 \text{x} \cdot 10^{-5} \text{ J}$ [viene dal bilancio energetico: la resistenza dissipa tutta l'energia inizialmente accumulata nel condensatore, che vale $CV_0^2/2$]
	d)	Quanto varrebbe il tempo di scarica τ ' se utilizzaste la stessa resistenza R di cui sopra e aveste due condensatori (identici a quello considerato) in parallelo? $\tau' = \dots = \dots = \dots = \dots = \dots = \dots = 17.6 \text{ ms}$ [viene da $\tau' = RC'$, e $C' = 2C$ per il
	e)	Come si esprime l'andamento temporale $E(t)$ del campo elettrico presente tra le armature? [Ricordate come si esprime il campo in un condensatore ad armature piane e parallele e tenete conto del processo "transiente", la scarica del condensatore, che stiamo considerando] $E(t) = \dots \qquad V(t)/d = V_0 e^{-t/\tau}/d$