Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 2, 19/10/2004

1.	Un vettore velocità ha componenti (2.40, 1.39) m/s:in che direzione si svolge il moto? \Box fa un angolo di $\pi/3$ con l'asse x \Box fa un angolo di $\pi/3$ con l'asse y \Box non si può dire
2.	Che direzione ha la somma dei tre vettori con componenti, rispettivamente, (1, 2, 3), (-3, -2, -1), (2, 1, -1)?
	la bisettrice del piano <i>yz</i>
3.	Un punto si muove in una data direzione dello spazio con velocità rettilinea ed uniforme, percorrendo una distanza di 100 mm in 4.0 s. Sapendo che le componenti della velocità lungo x e lungo y valgono rispettivamente 12 mm/s e 16 mm/s, quanto vale la componente z (a meno del segno!)? $X \square 15 \text{ mm/s} \square 28 \text{ mm/s} \square 72 \text{ mm/s} \square \text{ non si può dire}$
4.	Un punto si muove nello spazio tridimensionale secondo le leggi: $x(t) = v t \sin(\mathbf{w}t)$ $y(t) = v t \sin(\mathbf{w}t + \mathbf{p/2})$ $z(t) = v t$ Che traiettoria percorre?
	una spirale che si sposta formando un'elica con asse lungo z
5.	Come si esprime in un sistema di <i>coordinate cilindriche</i> (R , q , z) il moto di cui al quesito precedente? (R , q , z) = (,,) (vt ,- wt + $p/2$, vt) risultato corretto il 19/11/04 su osservazione di attenti studenti!
6.	Un punto nello spazio reale a tre dimensioni è individuato dalla terna di <i>coordinate sferiche</i> $R=6.0$ m, $\mathbf{q}=3\pi/4$, $\mathbf{f}=\pi/3$. Quanto valgono le coordinate cartesiane (x,y,z) del punto? $(x,y,z)=(\ldots,\ldots,\ldots)$ m $(3.7,-3.7,3.0)$ m risultato numerico corretto il 19/11/04 su osservazione di attenti studenti!
7.	In un modello semplificato (e classico) di un atomo, l'elettrone si muove in un'orbita circolare di raggio $a_0 = 0.50$ nm. a) Sapendo che la sua <i>velocità lineare</i> è diretta tangenzialmente e vale, in modulo, $v = 6.28 \times 10^5$ m/s, quanto vale la velocità angolare ω ? $\omega = \dots = \text{rad/s} v/a_0 = 1.25 \times 10^{15} \text{ rad/s}$
	b) Quanto vale il numero f di orbite percorse dall'elettrone in un secondo? $f = \dots = \infty$ orbite/s $\omega/2\pi = 2.00 \times 10^{14}$ orbite/s!!
	c) Quali sono modulo, direzione e verso dell'accelerazione a ? $a = \dots \qquad m/s^2 \qquad \omega^2 a_0 = 7.9 \times 10^{20} \text{ m/s}^2!!$ Direzione: radiale Verso: verso il centro (centripeta)
	d) Come si esprimono in <i>coordinate polari</i> la posizione $\mathbf{r}(t)$, la velocità $\mathbf{v}(t)$ e l'accelerazione $\mathbf{a}(t)$ del punto? (Supponete che all'istante iniziale la "fase" costante sia $\theta_0 = 0$ e che il moto avvenga in senso antiorario). $\mathbf{r}(t) = (\dots, \dots, \dots, \dots) \qquad (a_0, \mathbf{w}t)$ $\mathbf{v}(t) = (\dots, \dots, \dots, \dots, \dots) \qquad (\mathbf{w}a_0, \mathbf{w}t + \mathbf{p}/2)$
	$a(t) = (\ldots, (w^2 a_0, wt + p))$

8.	In una partita di calcio, Totti, battendo una punizione, intende servire "sull'ala" Zambrotta, con un passaggio raso terra (cosa che ci consente di considerare per il momento il problema a due dimensioni, cioè sul piano del campo sportivo). Per descrivere il problema, usiamo un riferimento cartesiano centrato sulla posizione da cui viene battuta la punizione, con l'asse y diretto verso la porta avversaria, e l'asse x lungo la larghezza del campo sportivo. Inoltre approssimiamo come punti giocatori e pallone, e supponiamo trascurabili tutti gli effetti (ad esempio, gli attriti) non specificamente menzionati. a) Supponendo che all'istante in cui Totti fa partire il pallone Zambrotta si trovi nella posizione $x_{0Z} = 30$ m, $y_{0Z} = -10$ m e che si stia movendo con velocità costante ed uniforme $v_Z = 5$ m/s diretta lungo l'asse y (si muove "sulla fascia"!), scrivete le leggi orarie del moto per il pallone e per Zambrotta (supponete che il pallone si muova con accelerazione uniforme e costante a con componenti $a_X a_Y$): $x_P(t) = \dots (a_X/2) t^2$ $y_P(t) = \dots (a_X/2) t^2$ $x_Z(t) = \dots (a_X/2) t^2$
	b) Quanto vale l'angolo q tra asse x ed a affinché il pallone arrivi a Zambrotta quando questo si trova
	nella posizione $x_F = 30$ m, $y_F = 30$ m (vicino alla linea di fondo)?
	$q = \dots$ rad $arctan(y_F/x_F) = \pi/4$ rad; infatti, detto t' l'istante in cui il pallone arriva a Zambrotta, deve essere $x_P(t') = (a_X/2) t'^2 = x_F$ e $y_P(t') = (a_Y/2) t'^2 = y_F$, da cui si deduce la risposta (che si ottiene anche da ovvie considerazioni geometriche!)
	c) Quanto vale l'istante t' in cui il pallone arriva a Zambrotta?
	$t' = \dots = $
	d) Quanto devono valere le componenti dell'accelerazione a_X ed a_Y perché il passaggio "riesca"? $a_X = \dots = \dots = m/s^2$ $(2x_F/t')^{1/2} = 2.7 \text{ m/s}^2$ $a_Y = \dots = m/s^2$ $(2y_F/t')^{1/2} = 2.7 \text{ m/s}^2$
	e) Quanto vale la velocità v_P del pallone quando questo arriva a Zambrotta? $v_P = (\dots, m/s) = (m/s) = (m/s$
	f) A questo punto Zambrotta "crossa" dentro l'area di rigore. Per farlo, colpisce il pallone <i>mentre è in movimento con velocità uniforme v</i> _Z impartendogli una velocità v' = (- 5.0, 0.0, 5.0) m/s (notate che Zambrotta intende calciare un pallonetto, cioè alza il pallone rispetto al suolo). Quanto vale la velocità v'' del pallone rispetto al suolo (scrivete tutte le tre componenti!)?
	$v'' = (\dots, \dots) = (\dots, \dots) \text{ m/s}$ $(v'_X + v_{FX}, \text{ etc.etc.}) = (17, 22, 5) \text{ m/s}$
	g) Sapendo che sul pallone agisce l'accelerazione di gravità diretta verso il basso e di modulo $g = 9.8$ m/s², quanto vale l'intervallo di tempo t '', se esiste , necessario perché il pallone, colpito dal suolo da Zambrotta, raggiunga la testa di Vieri, che salta fino a portare la sua testa all'altezza $h = 2.5$ m? t '' =
	raggiunta dal pallone, che vale $v''_{\mathbb{Z}}/(2g)$, è minore di $h!!$ Vieri non può segnare!!
9.	Un punto si muove sul piano xy con le leggi $x(t) = Bt$ ed $y(t) = (A^2 - B^2 t^2)^{1/2}$. a) Scrivete l'equazione della traiettoria: $y(x) = \dots (A^2 - x^2)^{1/2}$
	b) Sapete individuare di che tipo di traiettoria si tratta?