Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 5, 5/11/2004

1.	alla Su	ete una massa m collegata, tramite una molla di costante elastica k , a sommità di un piano inclinato con angolo θ (vedi figura). pponendo che non vi siano attriti, quanto vale, all'equilibrio , llungamento Δl della molla (in valore assoluto)? $\Delta l = \dots$	
	a)	Supponete ora che, per qualche ragione, il piano inclinato presenti un attrito statico, con coefficiente μ_S . Qual è il massimo valore del modulo della forza di attrito statico $F_{A,S}$ subita dalla massa? $F_{A,S} = \dots$	
	b) In queste condizioni, si osserva che potete spostare (molto lentamente) la massa verso la base del piano inclinato e mantenere una situazione di equilibrio. Quanto vale la massima elongazione della molla Δl ' che potete raggiungere in questo modo (in valore assoluto)? Δl ' =		
	c)	Se allungate ulteriormente la molla di un tratto Δx (in valore assoluto) rispetto al valore Δl ' della risposta precedente, e lasciate andare liberamente la massa, osservate che essa inizia a "risalire" il piano. Usando come asse x la direzione inclinato stesso (orientato verso la sommità del piano e con l'origine nel punto in cui la molla ha lunghezza di riposo), come si scrivono l'equazione del moto della massa e le condizioni iniziali x_0 e v_0 ? [indicate con $a(t)$ l'accelerazione della massa lungo questo asse] $a(t) = \dots$ $x_0 = \dots$ $v_0 = \dots$	
	d) Scrivete una soluzione particolare x_P per l'equazione del moto (possibilmente, la più semplice!) $x_P = \dots$		
	e)	e) A questo punto, ricordando che un'espressione per la soluzione generale di un'equazione differenziale del secondo ordine omogenea è del tipo $Acos(\mathbf{w}t + \Phi)$, con A , \mathbf{w} , e Φ da determinare, come si scrivono la legge oraria del moto $x(t)$ e della velocità $v(t)$? [ricordate anche che $(dcos\alpha/dt) = -(d\alpha/dt) sin\mathbf{a}$] $x(t) = \dots$ $v(t) = \dots$ con:	
	f)	Quanto vale la massima coordinata x_{MAX} raggiunta dalla massa nel suo moto? (ricordate che l'asse x è diretto verso la sommità del piano) $x_{MAX} = \dots$	
	g)	Il moto è sicuramente periodico? Commentate:	
2.	Un modo molto bislacco di misurare un coefficiente di attrito statico incognito μ_S per una superficie scabra segue questa procedura: poggiate una massa $m = 10$ Kg sulla superficie, ed applicate una forza		

Francesco Fuso - tel 050 2214305 - e-mail: fuso@df.unipi.it - web page: http://www.df.unipi.it/~fuso/dida

potete riempire di un gas di densità trascurabile rispetto all'aria (che ha densità $\rho = 1.00 \text{ Kg/m}^3$).

F = 46.5 N parallela al piano. Quindi agganciate alla massa un pallone, di massa trascurabile, che

	· • • •	muoversi sotto l'effetto della forza F quando il volume del sate per l'accelerazione di gravità il valore $g = 9.80 \text{ m/s}^2$)=	
	1 1	con la stessa forza, e sapendo che il coefficiente di attrito e la velocità <i>v</i> raggiunta dalla massa dopo un intervallo di .=m/s	
3.	 3. Un'automobile di massa <i>m</i> percorre a vecurva di raggio <i>R</i> che ha il piano strada angolo φ rispetto all'orizzontale ("curva figura). a) Disegnate il diagramma di corpo libera 	le inclinato di un parabolica" – vedi	
	b) Sapendo che il coefficiente di attrito si statico $F_{A,S}$? $F_{A,S} = \dots$	ratico è μ_S , quanto vale in modulo la massima forza di attrito	
		ponente radiale (cioè diretta lungo la congiungente urva) della forza di reazione vincolare $F_{N,R}$ esercitata dalla	
	d) Quanto vale la velocità massima v d sbandare?v =	percorrenza della curva prima che l'automobile cominci a	
4.	Osservate che un oggetto lanciato su un piano scabro con velocità $v_0 = 9.8$ m/s si ferma dopo averscivolato per un tratto $d = 9.8$ m. Quanto vale il coefficiente di attrito dinamico μ_D ?		
	\square 1.0 \square 0.5 \square non s	può dire	
	Spiegazione sintetica della risposta: .		