Corso di Laurea Ing. EA – ESERCIZI DI FISICA GENERALE – nr. 8, 16/11/2004

1.	vie	una partita di biliardo, la palla numero 1, che ha massa $m = 100$ g, si trova ferma sul panno. Essa ene colpita dalla palla numero 2, che ha la stessa massa m , e, subito prima dell'urto, ha velocità $v_2 = 0$ m/s. Supponendo che l'urto tra le due palle sia totalmente elastico , quali grandezze si conservano nel processo? (segnate tutte quelle che si conservano) \square Energia cinetica della palla 1 \square Energia cinetica della palla 2 \square Quantità di moto della palla 1 \square Quantità di moto totale
	b)	Sapendo che, dopo l'urto, la direzione di moto delle due palle è la stessa della palla numero 1 prima dell'urto (l'urto si dice centrale ed il problema diventa, di fatto, unidimensionale), quanto valgono la quantità di moto totale P e l'energia cinetica totale E del sistema subito dopo l'urto? $P = \dots \qquad \qquad$
	c)	Dette V_1 e V_2 le velocità (incognite) delle due palle subito dopo l'urto, come si scrivono le due equazioni necessarie per determinarne il valore? Prima equazione:
	d)	E quanto valgono, allora, le velocità delle due palle, V_1 e V_2 subito dopo l'urto? $V_1 = \dots = m/s$ $V_2 = \dots = m/s$
	e)	Supponendo che la durata dell'urto sia $\Delta t = 10^{-3}$ s, quanto valgono le forze impulsive $F_{1,2}$ ed $F_{2,1}$ esercitate dalla palla 2 sulla palla 1 e viceversa? $F_{1,2} = \dots = $
	f)	Supponete, ora, che l'urto non sia centrale , cioè che, ad esempio, la velocità V_I formi un angolo $\theta_1 = 45$ gradi rispetto alla direzione della velocità iniziale v_2 (notate che ora il problema è diventato bidimensionale, ed occorre usare dei vettori). Come si scrivono le equazioni di conservazione in questo caso? (chiamate asse X la direzione della velocità iniziale v_I e notate che, ora, potete scrivere tre equazioni invece che due!) Prima equazione:
	g)	In simili condizioni, siete in grado di determinare completamente le velocità V_1 e V_2 ? \square Sì \square No Spiegazione sintetica della risposta:
2.	ci dili dili	un film western, un cow-boy, di massa m , affianca una diligenza, di massa M , con il suo cavallo e salta sopra al volo. I dati del problema, per la soluzione del quale dovete considerare cow-boy e igenza come corpi puntiformi liberi di muoversi su un piano XY , vi dicono che la velocità della igenza subito prima dell'arrivo del cow-boy è $V = (V, 0)$, (cioè la diligenza procede lungo la ezione X con una velocità V), mentre quella del cow-boy è $\mathbf{v} = (V, v)$

a) Quanto vale l'energia cinetica totale iniziale E_0 del sistema?

	$E_0 = \dots $	
b)	Quanto vale vettorialmente la valocità V ' del sistema dopo l'arrivo del cow-boy? V '= $()$	
c)	Quanto vale la differenza di energia cinetica ΔE fra gli istanti subito dopo e subito prima l'arrivo del cow-boy sulla diligenza? (indicate anche il segno di questa differenza) $\Delta E = \dots$	
d)	E, supponendo che l'evento di "arrivo del cow-boy" abbia una durata Δt , quanto vale vettorialmente la forza F di interazione fra diligenza e cow-boy? $F = (\dots, \dots, \dots)$	
Un atomo di massa m (che fa parte di un gas contenuto in un recipiente a temepratura assoluta di da zero, ed è quindi dotato di un moto casuale con velocità di modulo v) urta contro una parete i (la parete del recipiente). Considerate il problema bidimensionale, usate un sistema di riferiment con l'origine nel punto di impatto tra atomo e parete, asse X diretto ortogonalmente alla parete ed Y parallelo alla parete (supposta piana).		
a)	Supponendo che l'urto perfettamente elastico, e chiamando v_X e v_Y le componenti della velocità, quanto vale in valore assoluto la variazione della componente X (cioè ortogonale alla parete) della quantità di moto Δp dell'atomo in seguito alla collisione? $\Delta p = \dots$	
b)	Supponete ora che ci sia un'altra parete di fronte alla precedente e parallela a questa, posta ad una distanza l . Dopo l'urto con la prima parete, l'atomo viaggerà contro la parete di fronte, la urterà e tornerà di nuovo verso la prima parete: supponendo che il moto dell'atomo sia rettilineo ed uniforme, quanto vale il tempo T necessario perché l'atomo ritorni sulla prima parete? $T = \dots$	
c)	Quanti vale il numero n di urti compiuti dall'atomo sulla prima parete nell'unità di tempo (un secondo, nel sistema mKs) e quanto il valore assoluto della variazione della quantità di moto ΔP per unità di tempo per l'atomo in seguito agli urti con questa parete? $n=\dots$ $\Delta P=\dots$	
d)	Potete commentare sulle dimensioni e sul significato della ΔP appena determinata? (si tratta di un'anticipazione di un argomento di termodinamica!)	

3.