Corso di Laurea STC Chim Curr Appl – ESERCIZI DI FISICA GENERALE – nr. 14

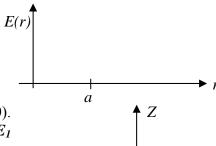
- 1. Un cilindro di altezza h e raggio a porta nel suo volume una densità di carica che è funzione del raggio secondo la legge $\rho(r) = \rho_0 r^2/a^2$. La geometria del cilindro è tale che esso può essere considerato **molto lungo**, cioè si possono trascurare gli "effetti" che interessano le superfici di base
 - a) Sulla base dei ragionamenti di simmetria e geometria, commentate sulla dipendenza dalle coordinate spaziali e sulla direzione del campo E(r) generato dalla distribuzione di carica.

Dipendenza dalle coordinate spaziali:

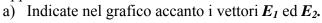
Direzione:

b) Quanto vale la carica totale Q contenuta nel cilindro? [Attenzione: la ρ **non** è uniforme, per cui dovete considerare la definizione $\rho(r) = dq(r)/dV!!$ Vi conviene considerare il cilindro come formto da tanti gusci cilindrici coassiali di spessore inifinitesimo dr]

 $Q = \dots$


c) Quanto vale il modulo del campo elettrico $E_{ext}(r)$ in un punto collocato a distanza r dall'asse del cilindro esternamente a questo?

 $E_{ext}(r) = \dots$


d) Quanto vale il modulo del campo elettrico $E_{int}(r)$ in un punto collocato a distanza r dall'asse del cilindro internamente a questo?

 $E_{int}(r) = \dots$

e) Disegnate schematicamente l'andamento del modulo di E(r) in funzione di r.

2. Considerate il piano z = 0 (è un piano XY collocato alla quota z = 0). Al di sotto del piano, cioè per z < 0, è presente il campo elettrico $E_1 = (a, 0, b)$, mentre al di sopra, cioè per z > 0, si trova il campo $E_2 = (0, 0, c)$; a,b,c sono componenti dei campi elettrici, tutte positive, opportunamente dimensionate e tali che a = b e c = 2a.

b) Quanto valgono le componenti dei campi E_{In} ed E_{2n} ortogonali al piano z=0?

 $E_{1n} = \dots E_{2n} = \dots$

c) Quanto vale il flusso del campo elettrico $\Phi(E)$ attraverso un cilindretto con asse lungo Z, superficie di base ΔS ed altezza dz (infinitesima, cioè **trascurabile**)?

 $\Phi(E) = \dots$

d) Quanto vale la densità di carica superficiale σ presente sul piano z=0?

 σ =

- 3. In una data regione di spazio (vuoto) è presente il campo elettrico E = (a, a, 0), con a componente opportunamente dimensionata.
 - a) Quanto vale la **divergenza** del campo div**E**? [Ricordate che, in coordinate cartesiane, è div**E** = $\partial E_X/\partial x + \partial E_Y/\partial y \ \partial E_Z/\partial z$, ovvero che l'equivalente "locale" del teorema di Gauss si scrive, nel vuoto: div**E** = ρ/ϵ_0]

 $\operatorname{div} E = \dots$

b) Come sono fatte le superfici equipotenziali? Commentate ed eventualmente fate un disegnino:

.....

	c)	Quanto vale la differenza di potenziale V tra i punti $\mathbf{A} = (0, 0, 0)$ e $\mathbf{B} = (d, D, -d)$, con d e D coordinate spaziali opportunamente dimensionate? $V = \dots$
4.	opj	una data regione di spazio (vuoto) è presente il campo elettrico $E = (ay, bx, 0)$, con a e b costanti portunamente dimensionate (x ed y sono le coordinate spaziali del punto in cui si misura il campo). Quanto vale la divergenza del campo div E ? div $E = \dots$
	b)	Tenendo conto del fatto che il campo elettrico deve essere conservativo (e quindi l'integrale di linea su una traiettoria chiusa deve essere nullo, ovvero $rot E = 0$), che relazione deve esistere tra le costanti a e b ? $a = \dots$
5.	circ	disegno rappresenta una sfera conduttrice dotata di carica Q raggio a condata da un guscio sferico di raggio interno $2a$ e raggio esterno $3a$, ch'esso conduttore e dotato di carica $2Q$. In condizioni di equilibrio, quanto devono valere le densità di carica volumica ρ_1 e ρ_2 all'interno della sfera e del guscio? ρ_1 =
	b)	Quanto vale il modulo del campo $E_{int}(r)$ presente nella regione (vuota) tra i due conduttori, cioè per $a < r < 2a$?: $E_{int}(r) = \dots$
	c)	Quanto vale il modulo del campo $E_{ext}(r)$ presente all'esterno del sistema, cioè per $r > 3a$?: $E_{ext}(r) = \dots$
	d)	Quanto vale la carica Q_{2a} che si trova sulla superficie interna del guscio sferico, cioè ad $r=2a$? $Q_{2a}=\dots$
	e)	Quanto vale la carica Q_{3a} che si trova sulla superficie esterna del guscio sferico, cioè ad $r = 3a$? $Q_{3a} = \dots$

D