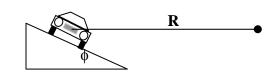

Corso di Laurea STC Chim curr appl – ESERCIZI DI FISICA GENERALE – nr. 4

- 1. Una massa m = 200 g è appesa, attraverso una molla di massa trascurabile e costante elastica $k = 2.00 \times 10 \text{ N/m}$, ad un solaio (g vale, in modulo, 9.80 m/s^2).
 - a) Detto z un asse verticale che punta verso il basso, con origine nella posizione di riposo della molla, scrivete l'equazione del moto della massa: (a_Z indica l'accelerazione lungo l'asse z) $a_Z = d^2z(t)/dt^2 = \dots$
 - b) Quanto vale la posizione di equilibrio stabile z_{EQ} della massa? $z_{EQ} = \dots = \dots = \dots = \dots = \dots$ cm.
 - c) Quanto vale la pulsazione ω del moto oscillatorio che vi aspettate che la massa compia? $\omega = \dots = rad/s$
 - d) Scrivete la legge oraria del moto z(t) supponendo che all'istante iniziale t=0 "lasciate libera di andare" la massa da z=0 con velocità $v_Z=0$ (formalmente, dovete trovare la soluzione dell'equazione differenziale al secondo ordine da voi scritta al punto a) con le condizioni al contorno specificate per posizione e velocità!) $z(t)=\dots$
- 2. Avete una massa m collegata, tramite una molla di costante elastica k, alla sommità di un piano inclinato con angolo θ (vedi figura). Supponendo che non vi siano attriti, quanto vale, **all'equilibrio**, l'allungamento Δl della molla (in valore assoluto)?

 $\Delta l = \dots$


a) Supponete ora che, per qualche ragione, il piano inclinato presenti un attrito statico, con coefficiente μ_S . Qual è il massimo valore del modulo della forza di attrito statico $F_{A,S}$ subita dalla massa?

 $F_{A,S} = \dots$

- b) In queste condizioni, si osserva che potete spostare (molto lentamente) la massa verso la base del piano inclinato e mantenere una situazione di equilibrio. Quanto vale la massima elongazione della molla Δl ' che potete raggiungere in questo modo (in valore assoluto)? Δl ' =
- c) Se allungate ulteriormente la molla di un tratto Δx (in valore assoluto) rispetto al valore Δl ' della risposta precedente, e lasciate andare liberamente la massa, osservate che essa inizia a "risalire" il piano. Usando come asse x la direzione inclinato stesso (orientato verso la sommità del piano e con l'origine nel punto in cui la molla ha lunghezza di riposo), come si scrivono l'equazione del moto della massa e le condizioni iniziali x_0 e v_0 ? [indicate con a(t) l'accelerazione della massa lungo questo asse]

 $a(t) = \dots$ $x_0 = \dots$ $v_0 = \dots$

3. Un'automobile di massa m percorre a velocità costante una curva di raggio R che ha il piano stradale inclinato di un angolo ϕ rispetto all'orizzontale ("curva parabolica" – vedi figura).

- a) Disegnate il diagramma di corpo libero dell'automobile.
- b) Sapendo che il coefficiente di attrito statico è μ_S , quanto vale in modulo la massima forza di attrito statico $F_{A.S}$?

		$F_{A,S} = \dots$
	c)	Quanto vale in modulo la componente radiale (cioè diretta lungo la congiungente dell'automobile con il centro della curva) della forza di reazione vincolare $F_{N,R}$ esercitata dalla strada sull'automobile? $F_{N,R} = \dots$
	d)	Quanto vale la velocità massima v di percorrenza della curva prima che l'automobile cominci a sbandare? $v = \dots$
4.		servate che un oggetto lanciato su un piano scabro con velocità $v_0 = 9.8$ m/s si ferma dopo aver volato per un tratto $d = 9.8$ m. Quanto vale il coefficiente di attrito dinamico μ_D ?
	□.	1.0
5.	par	alcune misure sperimentali, osservate che l'andamento temporale della velocità di una certa ticella di massa m in moto unidimensionale è ben descritto dalla legge $v(t) = v_0 (1 - e^{-At})$, con $A > 0$. Questa legge potrebbe indicare che la particella si muove, partendo da ferma, in un fluido viscoso? \Box . no \Box . sì \Box . boh
	b)	Se avete risposto "sì" al quesito precedente, e supponete che il moto in questione avvenga per effetto dell'accelerazione di gravità g , quanto vale il coefficiente di attrito viscoso β ? $\beta = \dots$