"Compiti per casa di fisica per STPA e TACREC" a.a 2004/05 - n. 2-18/10/2004

No	ome e cognome (opzionale!):							
(pe	Problemi e quesiti r favore, riportate le risposte negli spazi appositi e allegate le brutte copie o altri appunti che ritenete necessari per capire le motivazioni delle vostre risposte; quando possibile, indicate sia la risposta "letterale" che quella "numerica"; nei quesiti, fate una crocetta nel riquadro vicino alla risposta che ritenete giusta e, se richiesto, aggiungete una breve spiegazione, per esempio citando la legge o il principio fisico che credete opportuno)							
1.	Salite su un albero di altezza h e lanciate una pietra. Per chiarire la situazione sperimentale, vi servite di un sistema di riferimento cartesiano con assi xy rispettivamente in direzione orizzontale e verticale, centrato alla base dell'albero (supposto perfettamente verticale!) e sapete che il moto è bidimensionale, cioè la coordinata z resta costante. La velocità iniziale della pietra è data dal vettore $v_0 = (v_{0X}, v_{0Y})$, in cui entrambi le componenti sono positive, e sul moto della pietra agisce l'accelerazione di gravità, diretta verticalmente verso il basso e di modulo g . Trascurate ogni altra possibile accelerazione (cioè supponete non ci siano attriti o forze di altra natura se non la forza gravitazionale).							
a)	Scrivete le leggi orarie del moto lungo le due direzioni, $x(t)$ ed $y(t)$: $x(t) = \dots \qquad v_{0x}t$ $y(t) = \dots \qquad h + v_{0y}t - (g/2) t^2$							
b)	A quale istante t ' la pietra raggiunge il suolo, e quanto valgono le componenti della velocità $v_X(t')$ e $v_Y(t')$? $t' = \dots \qquad (v_{0Y} + \sqrt{(v_{0Y}^2 + 2gh)})/g$ [si ottiene ponendo $y(t') = 0$] $v_X(t') = \dots \qquad v_{0X}$ [resta inalterata, non essendoci accelerazione lungo x] $v_{Y}(t') = \dots \qquad v_{0Y} - gt'$							
c)	Quanto vale la distanza orizzontale dall'origine del punto X in cui la pietra tocca il suolo? $X = \dots x(t') = v_{0X} t' = v_{0X} (v_{0Y} + (v_{0Y}^2 + 2gh))/g$							
d)	Ora supponete che all'istante in cui lanciate la pietra un vostro amico stia passando per l'origine del sistema di riferimento muovendosi lungo l'asse x con una velocità costante v_A . Per fargli uno scherzo (!!), decidete di colpirlo con l'oggetto lanciato (in questo caso, una palla di gomma per evitare contusioni!). Quale condizione dovete imporre sulla velocità con cui lanciate la palla?							
poi	$v_{0X} = v_A$ [infatti, la legge del moto dell'amico è $x_A(t) = v_A t$; ché per colpirlo dovete avere, almeno in un certo istante t '', che $x(t$ '') = $x_A(t$ ''), occorre la condizione citata]							
e)	Sapendo che l'amico è alto h_A , a quale istante t '' lo colpirete in testa? $t'' = \dots \frac{(v_{0Y} + \sqrt{(v_{0Y}^2 + 2g(h - h_A))/g} \text{ [si ottiene ponendo } y(t'') = h_A \text{]}}{(v_{0Y} + \sqrt{(v_{0Y}^2 + 2g(h - h_A))/g} \text{ [si ottiene ponendo } y(t'') = h_A \text{]}}$							
2. a)	Un satellite percorre un'orbita circolare <i>geostazionaria</i> , cioè ruota di moto circolare uniforme attorno alla terra percorrendo un giro completo in un giorno (24 ore). Quanto vale approssimativamente la frequenza f del moto? (Esprimete il risultato in Hz, cioè s ⁻¹) $f = \dots - \mathbb{R}$ Hz $1/T \approx 1.16 \times 10^{-5}$ Hz, essendo $T = 24 \times 3600$ s							
b)	Supponendo che il raggio dell'orbita sia $R = 2x10^4$ Km, quanto valgono la velocità lineare v (in m/s) ed il modulo dell'accelerazione centripeta a (in m/s²)? $v = \dots = $							

Quesiti

1)	Un aeroplano viaggia <i>verso nord</i> con velocità di modulo 800 Km/h rispetto al vento . Il vento proviene <i>da sud</i> e si muove ad una velocità di modulo 100 Km/h rispetto al suolo . Qual è la velocità dell'aereo rispetto al suolo?							
	X □ 700 Km/h	□ 900 Km/h	□ 700) m/s	□ non si può	dire		
2)	Quanto vale la componente x della somma dei vettori posizione le cui componenti sono (-3, 12, 8) m e (3, -12, 8) m?							
	□ 6 m	X □ 0	□ 16 m	□ non	si può dire			
3)	-	odulo della son	nma tra i vetto □ -14		one (-3, 10, 6) ☐ 14 m	m e (-5, -10, -12) m?		
4)	Sapendo che il modulo di una velocità vettoriale sul piano xy è 2.0 m/s e che l'angolo formato con l'asse x vale 30 gradi, quanto vale la componente y della velocità? (Può esservi utile sapere che $sin(30) = 1/2$) $X = 1.0$ m/s $= 4.0$ m/s $= 0.82$ m/s $= 2.0$ m/							
5)	Che traiettoria ha un moto le cui leggi orarie nelle tre direzioni sono: $x(t) = Rcos(\mathbf{w}t)$; $y(t) = Rsin(\mathbf{w}t)$; $z(t) = vt$?							
6)	Per un moto circolare uniforme, quale delle seguenti affermazioni è corretta? □ la velocità lineare è radiale e l'accelerazione è radiale □ la velocità lineare è tangenziale e l'accelerazione è tangenziale ✗ □ la velocità lineare è tangenziale e l'accelerazione è radiale □ la velocità lineare è radiale e l'accelerazione è tangenziale							
7)	In un moto circolare uniforme, se raddoppiate il raggio dell'orbita mantenendo costante la velocità angolare, il modulo dell'accelerazione lineare:							
	☐ quadruplica	🗶 🗆 raddoppia	a			☐ diventa un quarto	$[a = \mathbf{w}^2 R]$	