"Compiti per casa di fisica per STPA e TACREC" a.a 2004/05 - n. 3-28/10/2004

No	ome e cognome (opzionale!):
(p	Problemi e quesiti per favore, riportate le risposte negli spazi appositi e allegate le brutte copie o altri appunti che ritenete necessari per capire le motivazioni delle vostre risposte; quando possibile, indicate sia la risposta "letterale" che quella "numerica"; nei quesiti, fate una crocetta nel riquadro vicino alla risposta che ritenete giusta e, se richiesto, aggiungete una breve spiegazione, per esempio citando la legge o il principio fisico che credete opportuno)
1. a)	Tre forze, $F_1 = (3, -2)$ N, $F_2 = (3, 2)$ N, $F_3 = (-1, 5)$ N, giacciono sul piano xy e sono applicate ad un punto materiale di massa $m=5$ Kg posto all'origine di un sistema di riferimento. Disegnate sul sistema di riferimento posto qui accanto, il
,	diagramma di corpo libero per il sistema considerato (fate uno schizzo, senza preoccuparvi troppo della precisione!)
b)	Quanto vale, componente per componente, la risultante della forza, $F = F_1 + F_2 + F_3$? $F = (\dots, N)$ (5, 5) N [si ottiene sommando le forze componente]
c)	Che tipo di moto compie il punto materiale sotto l'azione di tali forze?
d)	Quanto vale il modulo dell'accelerazione a e qual è la direzione del moto provocata da tali forze? $a = \dots = \dots = m/s^2$ $ F /m = 1 \text{ m/s}^2$ direzione: la bisettrice del primo quadrante (è la stessa di F !!)
e)	Quanto vale la forza F ' da applicare al punto se si vuole che questo non si muova (supponendo che fosse fermo prima dell'applicazione delle forze)? F ' =
2.	Nel piano xy , avete due cariche elettriche, Q_1 e $Q_2 = 2$ Q_1 , poste rispettivamente all'origine del sistema di riferimento e nella posizione $\mathbf{r}_2 = (A, 3A)$. [nella scrittura utilizzata, Q rappresenta un certo valore di carica, misurata in Coulomb, ed A una certa distanza, misurata in metri]. a) Quanto vale la distanza d fra le due cariche elettriche? $d = \dots \qquad \qquad \sqrt{(A^2 + 3^2 A^2)} = \sqrt{10} A$
	b) Quanto valgono il modulo F , la direzione ed il verso della forza elettrica risentita da Q_2 ? $F = \dots$ $k Q_1 Q_2 / d^2 = k 2Q / (10 A^2)$ Direzione e verso =

	Vi servite di una "bilancia a molla" (dinamometro) per misurare la massa m di un corpo. A questo scopo, disponete la molla in direzione verticale (la stessa direzione dell'accelerazione di gravità g , che ha modulo 9.80 m/s^2) tenendone un'estremità con la vostra mano, ed all'altra estremità appendete il corpo di massa incognita e misurate l'allungamento Δl provocato dall'effetto del peso del corpo (misurate l'allungamento quando il sistema ha raggiunto una condizione "di equilibrio"). a) Sapendo che la costante elastica della molla vale $k = 35.0 \text{ N/m}$ e che l'allungamento vale $\Delta l = 28.0 \text{ cm}$, quanto vale la massa m ?					
	$m = \dots$ Kg $k\Delta l/g = 1.00$ Kg [occhio alle unità di misura!]					
b)	Quanto vale, in modulo, la forza F che la vostra mano esercita sulla molla per tenere il sistema molla+massa fermo? (Supponete trascurabile la massa della molla) $F = \dots = \dots$					
c)	posizione posta leggermente più in bassa e la lasciate andare, quale legge oraria del moto vi aspettate per lo spostamento $\Delta l(t)$ della massa? (Supponete che l'istante in cui lasciate la massa sia $t = 0$, e che $\Delta l_0 = \Delta l(t=0)$).					
	$m{X} \Box \Delta l(t) = \Delta l_0 \cos(\mathbf{w}t)$ $\Box \Delta l(t) = \Delta l_0 \sin(\mathbf{w}t)$ $\Box \Delta l(t) = \Delta l_0 t$ $\Box \Delta l(t) = \Delta l_0 / t$ Spiegazione sintetica della risposta: La massa					
coi a Δ	mincia a compiere delle oscillazioni attorno alla posizione di equilibrio $\Delta l = 0$, con posizione iniziale pari					
d)	Ora, dopo aver fatto tornare il sistema all'equilibrio come nella domanda a), immergete (completamente) il corpo in un recipiente contenente del liquido. Rispetto all'allungamento Δl che misurate quando il corpo non è immerso, il nuovo allungamento della molla Δl ' sarà: \[\text{ maggiore } \mathcal{X} \text{ minore } \text{ uguale } \text{ mon si può dire } \] Spiegazione sintetica della risposta:					
	Una cassa di massa $m=100$ Kg si trova su una superficie orizzontale "scabra", che ha un coefficiente di attrito statico $\mu_S=0.5$. a) Quanto vale, al massimo , la forza di attrito statico F_A generata dalla superficie sulla cassa? (Supponete che il modulo dell'accelerazione di gravità sia $g=9.80 \text{ m/s}^2$). $F_A=\dots=\dots=N mg\mu_S=490 \text{ N}$ b) Se attaccate alla cassa un pallone di massa trascurabile e volume $V=10^4$ l, riempito di un gas di densità trascurabile rispetto a quella dell'aria, che vale $\rho=1.00 \text{ Kg/m}^3$. quanto vale la forza di attrito massimo F_A ? P_A =					
	c) Come cambia la risposta al punto a) se la cassa si trova su un piano inclinato di angolo 45^0 ? $\Box 2 F_A$ $X \Box F_A / \ddot{0}2$ $\Box F_A \ddot{0}2$ $\Box F_A$					

Spiegazione sintetica della risposta: piano inclinato è mgcos(45°), da cui la risposta	 La	reazione	vincolare	del