"Compiti per casa di fisica per STPA e TACREC" a.a 2004/05 - n. 6 - 11/11/2004

No	me	e cognome (opzionale!):	
Problemi e quesiti (per favore, riportate le risposte negli spazi appositi e allegate le brutte copie o altri appunti che ritenete necessari per capire le motivazioni delle vostre risposte; quando possibile, indicate sia la risposta "letterale" che quella "numerica"; nei quesiti, fate una crocetta nel riquadro vicino alla risposta che ritenete giusta e, se richiesto, aggiungete una breve spiegazione, per esempio citando la legge o il principio fisico che credete opportuno)			
1.	vei	a molla di costante elastica $k=9.8$ N/m e massa trascurabile è poggiata sopra un piano e disposta ticalmente. All'inizio la molla si trova nella sua posizione di riposo, e la sua lunghezza è $l_0=10$ cm. Una massa $m=100$ g viene poggiata con velocità nulla sulla molla, che si comprime fino a raggiungere una posizione di equilibrio (in cui la velocità è di nuovo nulla). Quanto vale, in modulo, la compressione della molla Δl in condizioni di equilibrio? $Dl = \dots = \dots = \dots = mg/k = 0.1$ m [si ottiene dall'equilibrio tra forza peso e forza elastica]	
	b)	Definendo come situazione finale quella di equilibrio e come situazione iniziale quella in cui la massa non è ancora stata poggiata sulla molla (e la molla è in posizione di riposo), quanto vale la variazione di energia potenziale elastica ΔU_{ELA} ? $DU_{ELA} = \dots = $	
	c)	E quanto vale la variazione di energia potenziale gravitazionale ΔU_G tra quando la massa viene appoggiata sulla molla e quando viene raggiunto l'equilibrio? $ DU_G = \dots \qquad \qquad = \dots J \qquad -mgDl = -9.8 \times 10^{-2} J $	
	d)	Per il processo considerato, come si esprime matematicamente la conservazione dell'energia meccanica totale? $DU_G + DU_{ELA} = 0$	
2.	col	una partita di biliardo, la palla numero 1, che ha massa $m = 100$ g, si trova ferma sul panno. Essa viene pita dalla palla numero 2, che ha la stessa massa m , e, subito prima dell'urto, ha velocità $v_2 = 1.0$ m/s. Quanto vale la quantità di moto totale p_{TOT} del sistema delle due palle prima dell'urto? $p_{TOT} = \dots \qquad Kg \text{ m/s} \qquad mv_1 + mv_2 = 0.10 \text{ Kg m/s} [v_1 = 0, \text{ essendo la palla numero 1 ferma!}]$	
	b)	Quanto vale l'energia cinetica totale E_{TOT} del sistema prima dell'urto? $E_{TOT} = \dots $ $J \qquad (m/2)v^{l}_{l} + (m/2)v^{l}_{2} = 5.0 \times 10^{-2} \text{ J}$	
	c)	Supponendo che l'urto tra le due palle sia totalmente elastico , quali grandezze si conservano nel processo? (segnate tutte quelle che si conservano) □ Energia cinetica della palla 1 □ Energia cinetica della palla 2 X □ Energia cinetica totale □ Quantità di moto della palla 1 □ Quantità di moto totale	
	d)	Sapendo che, dopo l'urto, la direzione di moto delle due palle è la stessa della palla numero 1 prima dell'urto (l'urto si dice centrale), quanto valgono la quantità di moto totale P e l'energia cinetica totale E del sistema subito dopo l'urto? $P = \dots \qquad PTOT$ $E = \dots \qquad ETOT$	
		Dette V_1 e V_2 le velocità (incognite) delle due palle subito dopo l'urto, come si scrivono le due equazioni necessarie per determinarne il valore? Francesco Fuso – tel 050 2214305 – e-mail: fuso@df.unipi.it – web page: http://www.df.unipi.it/~fuso/dida	

		Prima equazione: $v_2 = V_1 + V_2$ [dalla cons. della quantità di moto totale] Seconda equazione: $v_2^2 = V_1^2 + V_2^2$ [dalla cons. dell'energia cinetica totale]		
	f)	Quanto valgono allora V_1 e V_2 ? $V_1 = \dots = \dots = \dots m/s \qquad v_2 = 1.0 \text{ m/s}$ $V_2 = \dots = \dots m/s \qquad 0 \qquad \text{[le palle si "scambiano" le velocità!]}$		
		Quanto vale la differenza di quantità di moto Δp_2 per la sola palla numero 2? $ \mathbf{D}p_2 = \dots \qquad \qquad \mathbf{K}\mathbf{g} \ \mathbf{m}/\mathbf{s} \qquad \qquad mV_2 - mv_2 = -0.10 \ \mathbf{K}\mathbf{g} \ \mathbf{m}/\mathbf{s} $ [la la è ferma dopo l'urto!]		
	h)	Supponendo che la durata dell'urto sia $\Delta t = 10^{-3}$ s, quanto vale il modulo della forza impulsiva $F_{1,2}$ esercitata dalla palla 1 sulla palla 2? $F_{1,2} = \dots = \dots = N$ $ \Delta p_2/\Delta t = 100 \text{ N}$		
	i)	E quanto vale il modulo della forza impulsiva $F_{2,l}$ esercitata dalla palla 2 sulla palla 1 durante lo stesso urto? $F_{2,l} = \dots F_{l,2}$		
3.	inc del mu	una manovra di "aggancio al volo", il locomotore di un trenino giocattolo, di massa $M=100$ g, va contro un vagoncino, di massa $m=50$ g, che si trova sullo stesso binario. Le rispettive velocità prima ll'urto sono $V=-10$ cm/s e $v=20$ cm/s (il segno negativo tiene conto del fatto che i due oggetti si avono l'uno contro l'altro). Quanto valgono quantità di moto totale p_{TOT} ed energia cinetica totale E_{TOT} del sistema locomotore+vagoncino prima dell'urto? $p_{TOT}=$		
	b)	Sapendo che dopo l'urto il vagoncino rimane agganciato al locomotore, formando un unico corpo di massa $m+M$, potete affermare che l'energia cinetica totale: \square Si conserva \square Non si conserva \square Boh		
	c)	Quanto vale la quantità di moto totale P del sistema subito dopo l'urto? $P = \dots p_{TOT}$ [la quantità di moto totale si conserva non essendoci forze esterne al sistema]		
	d)	E quanto vale la sua velocità V ' subito dopo l'urto? V' =		
	e)	E quanto la variazione di energia cinetica totale ΔE ? $\Delta E = \dots$ J $((m+M)/2) V^{2} - E_{TOT} = -E_{TOT} = -1.0 \times 10^{-3} \text{ J}$		
Quesiti				
1)		In un urto, l'energia cinetica totale si conserva: □ Sempre		
2)		La conservazione della quantità di moto riguarda una grandezza: X □ Vettoriale □ Scalare □ Nessuna delle due risposte precedenti		
3) sta	di si	Quando un razzo si separa in due stadi, si può trattare il problema come un urto: □ Elastico		

 $Francesco\ Fuso-tel\ 050\ 2214305-e-mail: \underline{fuso@df.unipi.it}-web\ page:\ http://www.df.unipi.it/\sim fuso/dida$