"Compiti per casa di fisica per STPA e TACREC" a.a 2004/05 - n. 7 - 15/11/2004

Nor	ne	e cognome (opzionale!):
	le	Problemi e quesiti ore, riportate le risposte negli spazi appositi e allegate le brutte copie o altri appunti che ritenete necessari per capire motivazioni delle vostre risposte; quando possibile, indicate sia la risposta "letterale" che quella "numerica"; ruesiti, fate una crocetta nel riquadro vicino alla risposta che ritenete giusta e, se richiesto, aggiungete una breve spiegazione, per esempio citando la legge o il principio fisico che credete opportuno)
	0.0	blocchetto di alluminio, di forma cubica, viene riscaldato passando dalla temperatura iniziale T_0 = 000 °C alla temperatura finale T_1 = 400.0 °C. Quanto vale la variazione di temperatura ΔT espressa in gradi Kelvin? (supponete che la temperatura di fusione del ghiaccio in condizioni ordinarie valga $1/\alpha$ = 273 K) DT =
	b)	Sapendo che il coefficiente di espansione lineare dell'alluminio nell'intervallo di temperature considerato vale $\lambda=2.500\mathrm{x}10^{-5}$ 1/K, e sapendo che lo spigolo del cubetto vale, a T_0 , $l_0=10.000$ mm, quanto vale la lunghezza l dello spigolo alla temperatura T ? $l=\dots$ mm
	c)	E, essendo $V_0 = {l_0}^3$ il volume alla temperatura T_0 , quanto vale il volume V alla temperatura T ? $V = \dots = \dots = \dots = \dots$
	d)	Supponendo che il processo di dilatazione avvenga a pressione costante $P=1.000 \times 10^{\%}$ Pa (è grosso modo il valore della pressione atmosferica), quanto vale il lavoro L fatto dal cubetto verso l'esterno durante la dilatazione? (indicate anche il segno del lavoro) $L=\ldots$ J
	e)	Supponendo che la densità di massa dell'alluminio sia $\rho = 3.000 \times 10^3 \text{ Kg/m}^3$, quanto vale la massa m del blocchetto alla temperatura T_0 ? $m = \dots Kg$
	f)	Supponendo che il calore specifico (a pressione costante, come nella trasformazione considerata) dell'alluminio sia $c=1.000 \mathrm{x} 10^3$ J/(Kg K), quanto vale la variazione di energia interna ΔU del blocchetto durante il riscaldamento? (indicate anche il segno) $\Delta U = \dots$ J
	g)	Quanto vale la quantità di calore Q ceduta al blocchetto durante il processo? $Q = \dots = \dots $ J
	h)	Una volta raggiunta la temperatura T , il blocchetto viene tuffato in una bacinella contenente una massa $m_A = 100$ g di un liquido che si trova alla temperatura $T_A = 25$ °C ed ha calore specifico $c_A = 5.0 \times 10^3$ J/(Kg K). Assumendo assenti gli eventuali scambi di calore con l'esterno, quanto vale la temperatura finale T_{FIN} raggiunta dal sistema blocchetto+liquido all'equilibrio? $T_{FIN} = \dots = 0$ °C
	iso	numero di moli $n = 0.2$ di un gas (che si comporta come perfetto) è contenuto in un recipiente lato termicamente e di volume fisso $V = 10$ l. La temperatura iniziale del gas è $T_0 = 300$ K. Ricordando l'equazione di stato dei gas perfetti, $PV = nRT$, con $R = 8.3$ J?(K mole), costante dei gas perfetti in unità mKs , quanto vale la pressione iniziale P_0 del gas?quantità di moto totale p_{TOT} del sistema delle due palle prima dell'urto? $P_0 = \dots$ Pa

b) Supponete ora che all'interno del recipiente sia presente un riscaldatore elettrico (di volume trascurabile), che ha una potenza riscaldante W = 100 W ed è in perfetto contatto termico con il gas, senza alcuna dissipazione verso l'esterno. Se questo riscaldatore viene tenuto accesso ner un

	tempo $\Delta t = 10$ s, quanto valgono il calore Q ceduto al gas e la variazione dell'energia interna de gas ΔU ?
	$Q = \dots $ J $\Delta U = \dots $ J
	c) Sapendo che la capacità termica del gas considerato vale, a volume costante, $C = 5.0$ J/K, quanto vale la sua temperatura finale T (cioè quella raggiunta dopo l'intervallo Δt)? $T = \dots K$
	Quesiti
1)	Comprimete una certa quantità di gas contenuto all'interno di un recipiente, operando (voi!) un lavoro $L_{EXT} > 0$. Sapendo che nel processo il gas non scambia calore con l'esterno ($Q = 0$), la sua energia interna (e quindi la sua temperatura):
	□ Aumenterà □ Diminuirà □ Resterà costante □ Non si può dire Spiegazione sintetica della risposta:
2)	Una sostanza alimentare di cui si vuole determinare il potere calorico viene fatta bruciare interamente a contatto termico con un sistema (detto bomba calorimetrica) costituito da un corpo di capacita termica $C = 1.0 \times 10^3$ J/K. Supponendo che il corpo scambi calore solo con la sostanza sotto analisi, e che l'aumento di temperatura del corpo sia $\Delta T = 5.0$ K, quanto vale il potere calorico della sostanza? $\Box 5.0$ J $\Box 5.0 \times 10^3$ J $\Box 1.0 \times 10^3$ cal $\Box 5.0$ Kcal
3)	Una trasformazione si dice adiabatica quando: \Box La temperatura resta costante \Box Il prodotto PV resta costante \Box Non c'è scambio di calore con l'esterno ($Q=0$)
4)	Nel grafico qui a sotto (che riporta la pressione P sull'asse orizzontale, ed il volume V sull'asse verticale) disegnate qualitativamente l'andamento di una trasformazione a volume costante (isocora) a pressione costante (isobara) e a temperatura costante (isoterma).
	- >
	P