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SOMMARIO

-Approccio classico ai sistemi materiali mostra che non c’e possibilita di avere un laser:
radiazione di corpo nero
assorbimento da mezzi dielettrici

-Necessario usare approccio almeno semiclassico (radiazione classica, materia quant.):
cenni su concetti e strumenti per descrizione quantistica materia
funzioni d’'onda, confinamento e quantizzazione
livelli discreti di energia

Obiettivo finale : mostrare che si puo avere amplificazione di radiazione da parte
di un mezzo materiale se si considerano
sistemi quantistici e I'emissione stimolata
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MECCANICA QUANTISTICA

rodnominanti
| SAC AU AR RERRITE] (9 |

S

noi cictemi di intoreaccoe
[ A ) B } ' § &) I Al 1 | ) WSy B WS 1 ) W

N
P 1
molecole, solidi)

Punto di partenza della MQ:

Complementarita (o dualismo) onda corpuscolo

(e.g., onda e.m. e rappresentabile con fotone e, viceversa, particella materiale
deve poter essere rappresentata come onda)

Strumento fondamentale della MQ (diretta conseguenza di sopra):
Funzione d’onda W(r,t) per descrivere una particella quantistica (e.g., elettrone, fotone, etc.)
—> approccio probabilistico: | (r,t)|? & la probabilita di trovare particella in r, r+dr
- decade il concetto di traiettoria

Infatti il principio di indeterminazione stabilisce, e.g., nel caso unidimensionale:
AxAp 2> 77/2

o non & pozsibile conozcere simuttaneamente posizione e gquantita di maoto di
un dato oggetto con precisione arbitraria »
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CLASSICO VS QUANTISTICO

Problema fondamentale della meccanica classica (del punto):
- Determinare r(t) e v(t) (Ia traiettoria) a partire dalle forze F
- Strumento principe: equazione del moto a = F/m = -VV/m

Problema fondamentale della meccanica quantistica:
-Determinare ¥,t) e interpretarla probabilisticamente
-Strumento principe: equazione di Schroedinger (casi non relativistici!):

2 —
eV (F L) = iR or(r,Y
2m ot

0* 0° 0*

con  VAY(F,t)= ((9 —+ Y = —)¥(F,t) (in coordinate cartesiane)
X

V(r,t) potenziale che controlla la dinamica del corpo), genericamente dipendente da r,t

Equaziong di Szchroedinger nel caso unidimensionale:
_h_a_kp(x’t) +V(x,t) =1h o¥(xY) Derivate parziali!
2m ox° ot
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FONDAMENTI DELL'EQ. SCHROEDINGER

L. It must be consistent with the de Broglie-Finstein postulates, (5-8)

A=h/p and v=E/h
2. It must be consistent with the equation
E=p2m+V (5-9)

relating the total energy E of a particle of mass m to its kinetic energy p?/2m and
its potential energy V.

3. It must be linear in W(x,t). That is, if ¥,(x,#) and W.(x,) are two different
solutions to the equation for a given potential energy ¥ (we shall see that partial
differential equations have many solutions), then any arbitrary linear combination of
these solutions, W(x,t) = ¢, ¥, (x,t) + ¢, ¥,(x,1), is also a solution. This combination is
said to be linear since it involves the first (linear) power of W,(x,f) and ¥,(x,); it is
said to be arbitrary since the constants ¢, and ¢, can have any (arbitrary) values.
This linearity requirement ensures that we shall be able to add rogether wave Sfunctions
to produce the constructive and destructive interferences that are so characteristic of
waves. Interference phenomena are commonplace for electromagnetic waves; all the
diffraction patterns of physical optics are understood in terms of the addition of
electromagnetic waves. But the Davisson-Germer experiment, and others, show that
diffraction patterns are also found in the motion of electrons, and other particles.
Therefore, their wave functions also exhibit interferences, and so they should be
capable of being added.

4. The potential energy V is generally a function of x, and possibly even t. How-
ever, there is an important special case where

Vixp) =V, (5-10)

This is just the case of the free particle since the force acting on the particle is
given by

F = —aV(x,)/ox

which yields F =0 if V;, is a constant. In this case Newton’s law of motion tells us
that the linear momentum p of the particle will be constant, and we also know that
its total encrgy E will be constant. We have here the situation of a free particle with
constant values of A = h/p and v = E/k, discussed in Chapter 3. We therefore assume
that, in this case, the desired differential equation will have sinusoidal traveling wave
solutions of constant wavelength and frequency, similar to the sinusoidal wave func-
tion, (5-1), considered in that chapter.

Using the de Broglie-Einstein relations of assumption 1 to write the energy equa-
tion of assumption 2 in terms of 4 and v, we obtain

B2/2mi% + Vix,t) = h

Semplici ragionamenti generali conducono alla
formulazione dell’equazione di Schroedinger

In order to satisfy the linearity assumption 3, it is necessary that every term in the
differential equation be linear in W(x,), i.c., be proportional to the first power of
W(x,t). Note that any derivative of W(x,z) has this property. For instance, if we con-
sider the change in the magnitude of 8*¥(x,)/dx? that results if we change the mag-
nitude of W(x,t), say by a factor of ¢, we see that the derivative increases by the same
factor and thus is proportional to the first power of the function. This is true since

P[c¥(x)] . ST (x,t)
o ox?

where ¢ is any constant. In order that the differential equation itself be linear in
W(x,t), it cannot contain any term which is independent of ¥(x,t), i.e., which is pro-
portional to [W(x,t)]° or which is proportional to [¥(x,f)]? or any higher power.
After obtaining the equation, we shall demonstrate explicitly that it is linear in ¥(x,t),
and in the process the validity of these statements will become apparent.

Now let us use the assumption 4, which concerns the form of the free particle
solution. As suggested by that assumption, we shall first try to write an equation
containing the sinusoidal wave function, (5-1), and/or derivatives of that wave func-
tion. We have already evaluated some of the derivatives in Examples 5-1. Inspecting
these, we see that the effect of taking the second space derivative is to introduce a
factor of —k?, and the effect of taking the first time derivative is to introduce a factor
of —w. Since the differential equation we seck must be consistent with (5-12), which
contains a factor of k* in one term and a factor of ® in another, these facts suggest
that the differential equation should contain a second space derivative of W(x,t) and
a first time derivative of ¥(x,t). But there must also be a term containing a factor of
Vi(x.t) because it is present in (5-12). In order to ensure linearity, this term must con-
tain a factor of ¥(x,t). Putting all these ideas together, we try the following form for
the differential equation

?P(x,0) W(x,1)
dx? dat
The constants « and # have values which remain to be determined. They are used to

provide flexibility which, we might guess, will be needed in fitting (5-13) to the various
requirements it must satisfy.

o + V(x)¥P(xt=f

(5-13)



AUTOFUNZIONI E AUTOVALORI

D
D
N
n
—
o
>
o

Fortunatament

Y (x,1) =y (X)e(t)

h2 d*

Se V' non dipende dal tempo, cioe e V(x), allora: .

om0 V) =By ()

pt)=¢e 7

con

e

La f.ne d’onda degli stati
stazionari € fattorizzabile

¥(x) : autofunzione o autostato
E : autovalore dell’energia

56 REQUIRED PROPERTIES OF EIGENFUNCTIONS

In the following section we shall consider, in a very general way, the problem of
finding solutions to the time-independent Schroedinger equation. These consider-
ations will show that energy quantization appears quite naturally in the Schroedinger
theory. We shall see that this extremely significant property results from the fact that
acceptable solutions to the time-independent Schroedinger equation can be found
only for certain values of the total energy E.

To be an acceptable solution, an eigenfunction y(x) and its derivative dy(x)/dx are
required to have the following properties:

¥(x) must be finite.
¥(x) must be single valued.
W(x) must be continuous.

di(x)/dx must be finite.
dyr(x)/dx must be single valued.
di(x)/dx must be continuous.
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DERIVAZIONE EQ. AUTOSTATI

e ASe A m———r g T —

Substituting the assumed form of the solution, ¥(x,t) = ¥(x)@(?), into the Schroe-
dinger equation, and also restricting ourselves to time-independent potential energies
that can be written as V(x), we obtain

B PY(e() W )e(t)
ot

+ VW (x)elt) = if

T 2m ox?
Now -
02 ik d?
L I

the notation d%{x)/0x? being redundant with d2y(x)/dx? since (x) is a function of x
alone. Similarly

oy (x)e(t) do(t) do(t)
To YW =Yg
Therefore, we have
hz dz
~ 3 PO Vot = i 220
Dividing both sides of this equation by ¢(x)e(r), we obtain

L L _ L de(
Vf(x)[ 2m  dx? +V(x)'lf(x)}_; i

Note that the right side of (5-36) does not depend on x, while the left side does not
depend on t. Consequently, their common value cannot depend on either x or ¢. In
other words, the common value must be a constant, which we shall call G. The result
of this consideration is that (5-36) leads to two separate equations. One equation is
obtained by setting the left side equal to the common value

1 R d*y(x)
W [— ﬂ dx2 + V(x}l,[l(x):| =G
The other equation is obtained by setting the right side equal to the common value
1 del(t)

o) dt (5-38)

(5-36)

(5-37)

T_he constant G is called the separation constant, for the same reason that this tech-
nique for solving partial differential equations is called the separation of variables.

This differential equation telis us that the function @(¢), which is its solution, has the
property that its first derivative is proportional to the function itself. Anyone with
much experience in differentiating would not have difficulty in guessing that ¢(t) must
be an exponential function. Therefore, let us assume that the solution fo the differ-
ential equation is of the form A

oty =&
where « is a constant that will be determined shortly. We verify this assumed solution
by differentiating it, to obtain

(5-39)

do()
T ae™ = ap(t)

which we then substitute into (5-39). This yields

() = — 5 00

If we set
iG
=T
the assumed solution obviously satisfies the equation. Therefore
Q(t) = e~ G (5-40)

is a solution to {5-38) or (5-39).

We see that @(¢) is an oscillatory function of time of frequency v = G/h. But, according
to the de Broglie-Einstein postulates of (5-8), the frequency must also be given by
v = E/h, where E is the total energy of the particle associated with the wave function
corresponding to (). The reason is, of course, that ¢(f) is the function that specifies
the time dependence of the wave function. Comparing these expressions, we see that
the separation constant must be equal to the total energy of the particle. That 1s
G=E (5-42)
Using this value of G in the space equation, (5-37), that we obtained from the
separation of variables, we have
h d*(x)

—z + Vxix) = Evix)

3m dx? {5-43}



ESEMPIO 1: FUNZIONE D’'ONDA PARTICELLA LIBERA

%

I
o

Esempio: particella libera (cfr. fotone) che si muove lungo X
avendo quantita di moto definita p N

p
P (x,t) oc e =y (X)o(t)

v (x) =e™

Secondo de Broglie si ha:
con p = 7k

Lunghezza d’onda di de Broglie: A;z=27/k = h/p

Attenzione: la funzione d’onda di de Broglie ha |y|?=1
— la probabilita € sempre e ovunque unitaria
= [ |y|? dx (fattore di normalizzazione) diverge!

D’altra parte, per principio di indeterminazione: Ap=0 =2 Ax — oo

- (realisticamente occorre pacchetto d’onda, cfr. serie di Fourier)

Figure 5-2 A very schematic picture of a wave function and its associatgd particle. The
particle must be at some location where the wave function has an appreciable amplitude.
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ESEMPIO 2: POTENZIALE A GRADINO

For the step potential, the x axis breaks up into two regions. In the region where
x < 0 (left of the step), we have V(x) = 0, so the eigenfunction that will tell us about
the behavior of the particle is a solution to the simple time-independent Schroedinger
equation
h? d*(x)
2m dx?

In the region where x > 0 (right of the step), we have ¥(x) = V,, and the eigenfunction

is a solution to a time-independent Schroedinger equation which is almost as simple
7% dip(x)

T m + Voifr{x) = Er(x) x>0 (6-13)

= E¥(x) x<0 (6-12)

The two equations are solved separately. Then an eigenfunction valid for the entire
range of x is constructed by joining the two solutions together at x = 0 in such a
way as to satisfy the requirements, of Section 5-6, that the eigenfunction and its first
derivative are everywhere finite, single valued, and continuous.

Consider the differential equation valid for the region in which ¥(x) = 0, (6-12},
Since this is precisely the time-independent Schroedinger equation for a free particle,
we take for its general solution the traveling wave cigenfunction of (6-8). We write
that eigenfunction as

Y(x) = Ae™* + Be~™*  where k, = ——'2:“5 x<Q (6-14)

Next consider the differential equation valid for the region in which V(x) = Vo,
(6-13). From the qualitative considerations of Section 5-7, we do not expect an oscil-
latory function, such as in (6-14), to be a solution since the total energy E is less than
the potential energy V; in the region of interest. In fact, those considerations tell us
that the solution will be a function which “gradually approaches the x axis.” The sim-

plest function with this property is the decreasing real exponential, which can be
written

Y(x) = g4 x>0 (6-15)
Let us find out if this is a solution and, if so, also find the required value of k,, by
substituting it into (6-13), which it is supposed to satisfy. We first evaluate

2
TV _ (ke = Kyt

dx?

Then the substitution yields

hz
= 3 BV0) + Vo) = Ey(x)

This satisfies the equation, and therefore verifies the solution, providing

k, = ——“2"'(‘;"_& E<V, (6-16)

V(x)

V(x)=Vy

Vix)=0

Classicamente: per E<V, ho solo
riflessione sulla barriera

(esempio: un piano inclinato che deve
essere risalito da una particella)

Quantisticamente ho riflessione, ma
anche trasmissione!!
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POTENZIALE A GRADINO Il

Y(x) = et

m(V, — E
where k; = —\/——‘(; £
should also be a solution to the time-independent Schroedinger equation that we
are dealing with. It is equally easy to verify this, by substilution into the equation.
But let us instead verify that the arbitrary combination of the two particular solutions
2m(V, — E)

Fa

where k; = ———F——
fi

and where C and D are arbitrary constants, is a solution to (6-13). We calculate

x>0 (6-17)

Y(x) = Ce*** 4 De~h~ x>0 (6-18)

b — i
D — Cager 4 D(—ke = kgt = TR0 By
and substitute the result into the equation. We obtain

h? 2m .
~m 7 (Vo — EWr(x) 4+ Voy(x) = E¥(x)

m fi
Since this is obviously satisfied, we have verified that (6-18) is a solution. Since it
contains two arbitrary constants, it is the general solution to the time-independent
Schroedinger equation for the region of the step potential where V(x) = V;, with E <
Vo. Although the increasing exponential part will not actually be used in the present
section, it will be used in a subsequent section.

The arbitrary constants 4, B, C, and D of (6-14) and (6-18) must be so chosen that

the total eigenfunction satisfies the requirements concerning finiteness, single val-

uedness, and continuity, of Y(x) and diyr(x)/dx. Consider first the behavior of ¢(x) as’

x = + co. In this region of the x axis the general form of ¥(x) is given by (6-18).
Inspection shows that it will generally increase without limit as x — + co, because
of the presence of the first term, Ce***. In order to prevent this, and keep y/(x) finitc,
we must set the arbitrary coefficient C of the first term equal to zero. Thus we find

CcC=0 (6-19)
Single valuedness is satisfied automatically by these functions. To study their con-
tinuity, we consider the point x = (., At this point the two forms of y(x), given by
(6-14) and (6-18), must join in such a way that y(x) and di(x)/dx arc continuous.
Continuity of W(x) is obtained by satisfying the relation
Dle™) Lo = Ale™™), o + Ble™™%)__,
which comes from equating the two forms at x = 0, This rclation yields

D=A+ B {6-20)
Continuity of the derivative of the two forms
dy(x) -
= —k.D kax
I k,De x>0
and
d'ﬁix] = ik, Aeix — ik, Be ix x <0

is obtained by equating these derivatives at x = 0. Thus we set

—kaD(e ), o = ik Ale™),_y — ik, Ble™™®)__,
Thig vielde
ik
2p-A-B (6-21)
ky
Adding (6-20) and (6-21) gives
p ik,
A=Z =2
3 (1 + k,) (6-22)
Subtracting gives
b ik
B=—(1--2 -
3 ( h) (6-23)

We have now determined A, B, and C in terms of D. Thus the eigenfunction for the
step potential, and for the energy E < 1, is

%(I + ik et ™ + g (1 —ikyfke ™ x<0

Yix) = (6-24)

De—k:x x> 0

The one remaining arbitrary constant, D, determines the amplitude of the eigen-
function, but it is not involved in any of its more important characteristics. The
presence of this constant reflects the fact that the time-independent Schroedinger
equation is linear in y(x), and so solutions of any amplitude are allowed by the
equation. We shall see that useful results can usually be obtained without bothering
to carry through the normalization procedure that would specify D. The reason is
that the measurable quantities that we shall obtain as predictions of the theory con-
tain D in both the numerator and the denominator of a ratio, and so it cancels out.

Aei.hxe-'isdﬁ + Be—iklxe iEtih — Aei’{hx—gﬁi] + Bei{—klx—ﬂrﬂ] x< 0

¥xg) = De"¥2%g~ Ikt x20

6-25)

Autofunzione determinata completamente dalla
continuita a parte un coefficiente di normalizzazione

10
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POTENZIALE A GRADINO lIli

Y(x}
VO
N A N Ial I N
/ \_ :
- B 0
+—>

d

W (x 1) Wix, 1) Al

termina dopo d < A5

Nota: la particella puo “tunnellare” se il gradino

|

Figure 6-7 Top: The eigentunction y(x) for a particle incident upon a potential step at x=
0, with total energy less than the height of the step. Note the penetration of the eigenfunc-
tion into the classically excluded region x > 0. Bottom: The probability density W*W¥ =
W* = ¢* corresponding to this eigentunction. The spacing between the peaks of 2 is
twice as close as the spacing between the peaks of .

Nota: nel caso (meno interessante) in cui E>V, la soluzione si trova con procedimento simile,
ma manca lI'andamento esponenziale decrescente
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ESEMPIO 3: BUCA DI POTENZIALE (INFINITA)

Esempio: particella libera (elettrone) che si muove lungo X a
essendo confinata in intervallo —a/2, a/2 da potenziale

V() = {{] D<r<a | ¢ |

v r<ixr>a P

Suppongo, ragionevolmente, che la particella sia costretta a stare nella buca

‘(x,t) sara sovrapposizione di particella/onda che si muove vs dx e verso sin

‘{J(X,t) _ Aei(kx—a)t) n Bei(—kx—a)t) con @ :%

Condizioni al bordo: ¥=0perx=0ex=a

A =B oppure A=-B

Nota: qui non vale continuita della derivata a causa di V =2 «
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BUCA DI POTENZIALE (INFINITA) 1l

Le condizioni al contorno sono le stesse della radiazione nella

cavita (scatola)
T

Si era ottenuto: kn — ng

Essendo la particella libera I'energia € solo cinetica:
2 21,2 2 2
p, Ak , i°r
= =N —-

E, = >
2m 2m 2ma
Sistema con livelli discreti E
(quantizzati) di energia
Nota: n =0

Energia stato fondamentale non € nulla

Esempio: pallina m = 0.1 kg in scatolaa =10 cm > E,~1064 ] !
Elettrone m ~ 1039 kg in scatolaa=1nm > > E,~5x10?°J ~ 0.5 eV
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Vo

BUCA DI POTENZIALE FINITA

Ea 1T o—

Ep

-af2

N EI /\
0 +d/20 x

-af2 0 +af2
Figure 6-26 The three bound eigenfunctions for the square well of Figure 6-25.

Le condizioni al contorno non impongono piu ¥=0

- La funzione d’onda “deborda” esponenzialmente dalla buca
- I numero di livelli possibili e limitato

In_ogni caso: confinamento spaziale <-> quantizzazione livelli
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ESEMPIO 4: OSCILLATORE ARMONICO

m)\ f V(x)=(C/2)x?
o
& Soluzione autofunzioni oscillatore armonico piu complicata
£ Sempre autofunzioni confinate spazialmente (decadono
X / esponenzialmente oltre i punti di inversione)
Ey

Figure 6-35 The first few eigenvalues of the sim-
ple harmonic oscillator potential. Note that the alx)
classically allowed regions {between the intersec- e
tions of V(x) and E,) expand with increasing values
of E,.

Ey

Table 6-1 Some Eigenfunctions y(u) for the Simple Yolx)
Harmonic Oscillator Potential, where v is Y
Related to the Coordinate x by the Equation | /\

u= [(Cm)1/4/huzjx — \/ \/ x

Quantum Number Eigenfunctions wi(x)

0 Yo = Age 1 |

1 ¥, =A1ue—“zf2 T ! X
2 h, = Ay(l — 2ud)e 12 Yolx)

3 W3 = Ay(3u — 2ud)e 2 7

4 Ya = A3 — 1207 + 4u4)e_”2"2 \

5 Ys = As(15u — 200> + 4ud)e ™2 - a 0 ‘ ¥

Livelli equispaziati
Autovalori: E, = (n+1/2)hv
(cfr. energia fotoni, che sono autofunzioni di oscillatore armonico di radiazione)
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Table 6-2. A Summary of the Systems Studied in Chapter 6

Name of
System

Zero
potential

Step
potential
(energy
below top)

Step
potential
(energy
above top)

Barrier
potential

(energy
below top)

Barrier
potential
(energy
above top)

Finite
square
well
potential

Infinite
square
well
potential

Simple
harmonic
oscillator
potential

RIAS

Physical
Example

Proton in
beam from
cyclotron

Conduction
clectron near
surface of
metal

Neutron
trying to
escape
nucleus

2 particle
trying to
escape
Coloumb
barricr

Electron scat-
tering from
negatively
ionized atom

Neutron
bound in
nucleus

Molecule
strictly
confined
to box

Atom of
vibrating
diatomic
molecule

SUMENDO...

Potential and Probability
Total Energies Density
E ik
——V(x) x
—V{x)
] E N
_— ! x
0 o]
*
E wry
Vix) ’ \ /:
i
— l x
0 0
: ]
e N
; Ly
— V) — T
o] a x) 0 a i
-_ K |
J_L ‘ ‘ \IJ*W
| |
| ]
v \ L
0 a (x) 0 a g
]

b= -
&)
®

Significant
Feature

Results used
for other
syslems

Penetration
of excluded
region

Partial reflec-
tion at
potential
discontinuity

Tunneling

No reflection
at certain
cnergies

Energy
quantization

Approximation
to finite
square well

Zero-point
energy



MATERIA QUANTISTICA

La descrizione quantistica della materia € essenziale per interpretare
correttamente l'interazione radiazione/materia, con approcci sia semiclassici
(radiazione come onda) che quantistici (radiazione come fotoni)

Paradiigma della materia e I'atomo, anzi il piu semplice tra gli atomi: idrogeno

2 2
Modello planetario dell’'atomo (classico): = Le
- Equilibrio (forza Coulomb da acc. centr.) r 4me,r’ | 7e? 7o | 7e!

E = — — : —
: : L 2 4re,r 4we,l 2 4me,r
- Energia (elettrostatica + cinetica) 1 . 7o
E=—mv" —
2 dre, v
\ V() i

+——FE

Confinamento

~1/r ~1/r _ K _
quantizzazione
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ATOMO DI BOHR (OLD QUANTUM THEORY)

Ipotesi di Bohr (quantistica): [ = gy = ni £
27

. . . . 2712
Quantizzazione raggio orbitale: . _n he,

mnZe* -
2
. . . mZ'e* 1 Z
Quantizzazione energia:  E, =-o= > E =-13.6— eV — n=2
’ n
—  n=1

Sistema con livelli discreti
(quantizzati) di energia

Esistono orbite stabili con momento angolare quantizzato
—> energia quantizzata
—> possibilita di transizioni tra livelli discreti (spiegazione spettri sperimentali)
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ATOMO (DI IDROGENO) “DI SCHROEDINGER”

hZ
T V3 (r80) + VI (r,0,0) = Egr(r.,p) (7-12)

where

s Léaf,e 1 e/ @ 1 &

Vicag ( —) * oo ( o Fé) MO R O
is the Laplacian operator in the spherical polar coordinates r, 0, @. For the details of
the coordinate transformation leading to (7-12) and (7-13), the student should consult
Appendix M. A comparison of the forms of the Laplacian operator in rectangular
and spherical polar coordinates, (7-8) and {7-13), shows that we have simplified the
cxgression of the potential energy function at the expense of considerably compli-
catmg_ the expression of the Laplacian operator in the time-independent Schroedinger
equation that must be solved.

Nevertheless, the change of coordinates is worthwhile because it will allow us to
find solutions 1o the time-independent Schroedinger cquation of the form
Wird.0) = ROO)D(g) (7-14)
That is, we shall show that there are solutions ¥(r.0.0) to (7-12) that split into prod-
ucts of three functions, R(r), ®(6), and ®(¢), each of which depends on only one of
the coo'rdinates. The advantage lies in the fact that these three functions can be found
l?y solving ordinary differential equations. We shaw this by substituting the product
to.rm, Y(rd.p) = RINO(B)D(p), into the time-independent Schroedinger equation ob-
tained by cvaluating the Laplacian operator in (7-12) from (7-13). This yields

nlleé JdROD 1 ! 7 i
R[LE(otReny, L e R00y, 1 rren
2u |t ar ar rtsin 6§ 0g a0 risin? § dpl

7 + V(r)RO® = ERGD
Carrying out the partial differentiations, we have

Wieed f, dR RO 4/ 46 RO do
77 T\t lsinfl— |+ —— —
wl| r?odr dr 72 sin § d8 dd r?sin? @ do?

Ricerca autofunzioni complicata da
simmetria sferica
(coordinate sferiche)

In this equation we have written the partial derivative 0R/ér as the total deriva-
tive dR/dr since the two are cquivalent because R is a function of r alone. The
same commenl applies to the other derivatives. If we now multiply through by
—2ur? sin? §/RO®AK?, and transpose, we obtain
1 0 sin®f 4/ ,dR sinf d (. dO© 20, .
— = — =] - —|sin8— ) — 5 r*sin® J[E — V(r
D do’ R o\ &) @ e [E = Vi

do

As the left side of this equation does not depend on r or 4, whereas the right side
does not depend on ¢, their common value cannot depend on any of these variables.
The common value must therefore be a constant, which we shall find it convenient o
designate as —m?. Thus we obtain two equations by setting each side equal to this
constant

£

P —mi® (7-15)

and

Ld dR v d . dO 2 0 i m}

Bt S sin S S E— v = -

Rdr (' dr) @ sin 6 df (“" 49) g LE VI =Gy
By transposing, we can rewrite the second equation as

1 d{,dR 2ur? _ m? 1 d [ . _d©

Lﬁ%(r W>+ h* LE_V(r)]isinZO_Gsinﬁﬁ 5'"(?%

Since we have here an equation whose left side docs not depend on onc of the vari-
ables and whose right side does not depend on the other, we conclude again that both
sides must equal a constant. It is convenient to designatc this constant as I({ + 1).
Thus we obtain, by setting each side equal to [{I + 1), two more equations

| d(. . d®\ me
_ e - 7.1
sin 0 40 (S'" b dB) *anzg - DO 716
and
1d{,dRY\ 2u _ R
?E(r E—)+F[E—V(F}JR—!(I+))P (7-17)

We see thal the assumed product form of the solution, ir.0,i) = R(NO(A)D(op), 15
valid because it works! We also see that the problem has been reduced to that of
solving the ordinary differential equations, (7-15), (7-16), and (7-17), for d(p), S8),
and R(r).

In solving these equations, we shall find that the equation for ®(¢) has acceprable
solutions only for certain values of m,. Using these values of m, in the equation for
G(f), it turns out that this equation has acceptable solutions only for certain values
of 1. With these values of ! in the equation for R(r), this equation is found to have
acceptable solutions only for certain values of the total energy E; that is, the energy
of the atom is quantized.



ATOMO (DI IDROGENO) II

7-5 EIGENVALUES, QUANTUM NUMBERS, AND DEGENERACY

One of the important results of the Schroedinger theory of the one-electron atom is
the prediction of (7-22) for the allowed values of total energy of the bound states of
the atom. Comparing this prediction for the eigenvalues

uZe* 136V
(dme 22000 n?
with the predictions of the Bohr model (see (4-18)), we find that identical allowed en-
ergies are predicted by these treatments. Both predictions are in excellent agreement
with experiment. Schroedinger’s derivation of (7-22) provided the first convincing
verification of his theory of quantum mechanics. Figure 7-3 tllustrates the Coulomb
potential V(r) for the one-electron atom, and its eigenvalues E,.

What is the relation between the Coulomb potential and its cigenvalues, and the
potentials studied in Chapter 6 and their eigenvalues? One obvious difference is that
the guantum mechanical calculations leading to the eigenvalues of the Coulomb
potential are appreciably more complicated. But the Coulomb potential is an exact
description of a real threc-dimensional system, The potentials previously treated are
approximate descriptions of idealized one-dimensional systems, which are designed
to simplify the calculations. Part of the complication for the Coulemb potential is
also due to its spherical symmetry, which forces the use of spherical polar coordinates
instead of rectangular coordinates.

The similarities are much more fundamental than the differences. For the Coulomb
potential, as for any other binding potential, the allowed total energics of a particle
bound to the potential are discretely guantized. Figure 7-4 makes a comparison be-
tween the allowed energics fer a Coulomb potential and for several one-dimensional
binding potentials. In this figure the Coulomb potential is represented on a crosscut
along a diameter through the one-electron atom. Note that all the binding potentials
have a zero-point energy. That is, in all cases the lowest allowed value of total energy
lies above the minimum value of the potential energy. Associated with its zero-point
energy, the one-electron atom has a zcro-point motion like other systems described
by binding potentials. In the following scclion we shall sce that this phenomenon can
give us a basic explanation of the stability of the ground state of the atom,

E.=—

< r
_0.85%}1
-151 T
-339 Ty

3
&
g
g -136l g

Vir)

Figure 7.3 The Coulomb potential V{r) and its eigenvalues E,. For large values of n the
eigenvalues become very closely spaced in energy since E, approaches zero as n
approaches infinity. Note that the intersection of V(r) and E,, which defines the location
of one end of the classically allowed region, moves out as n increases. Not shown in this
figure is the continuum of eigenvalues at positive energies corresponding to unbound
states.

Table 7-2 Some Eigenfunctions for the One-Electron Atom

Quantum Numbers

n l nm; Eigenfunctions
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Autovalori simili a Bohr

Autofunzioni con “armoniche sferiche”




ATOMO (DI IDROGENO) Il

Autofunzioni dipendentida r

Risolvendo atomo di idrogeno con

002 —
oot f Schroedinger si trovano stati stazionari
| _

15 0 0.5
oz~ Esistono livelli stabili con energia
oou guantizzata
L1 1J5 u_l._ﬂ-'_?)‘gj

01/~ e T Applicabile anche ad altri atomi (con
0 : R ' maggiori difficolta)

5 15
ol n=3.1=1
o e T L L T — Esistono “degenerazioni”’ dei livelli
o (scompaiono per altri atomi e scompaiono
Oﬁ N T ."fg’[:;. . in parte anche per idrogeno in trattazione
&z relativistica)

Figure 7.5 The radial probability density for the electron in a one-electron atom for fi =
1, 2, 3 and the values of / shown. The triangle on each abscissa indicates the value of
T as given by (7-29). For n = 2 the plots are redrawn with abscissa and ordinate scales
expanded by a factor of 10 to show the behavior of P,r) near the origin. Note that in the
three cases for which /=1_,, =n — 1 the maximum of P,(r) occurs at Faone = N2ag/Z,

varhlab fm e diamke L. AL _
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CONCLUSIONI

La MQ rappresenta un approccio molto potente per interpretare i sistemi fisici
La MQ mostra che sistemi “confinati” hanno livelli discreti di energia

La MQ si applica molto bene alla materia, in particolare agli atomi (vedremo
poi ulteriori estensioni a sistemi di diversa natura)

La semplice ipotesi di Bohr mostra livelli discreti (in accordo con esperimenti)

Schroedinger conferma, ed estende portando alla determinazione delle
autofunzioni

Faremo interagire sistemi di questo tipo con la radiazione e vedremo cosa
succede (secondo Einstein)
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