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OUTLOOK

We haev seen that:

- Purely classical approach cannot account for laser operation:
only absorption can be envisioned
conventional light sources (black-body) are by far different with respect to lasers

- Needed to move to a semiclassical approach (classical radiation + quantum matter):
wavefunctions, Schroedinger, quantum confinement
discrete energy levels

Final objective:
To show how (properly prepared) quantum matter can lead to light amplification
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QUANTUM MECHANICS

Quantum effects are dominant in many systems (typically, involving small, fast particles)
They are essential to understand the light/matter interaction

Starting points of QM:
Wave-matter complementarity (or dualism), that means, e.g., an e.m. wave can
be represented by particles (photons) and particles can be represented by waves

Basic QM tool (consequence of the dualism above):

Wavefunction W(r,t) to describe a quantum particle

- probabilistic approach: |\ (r,t)|? represents the probability to find the particle in r, r+dr
- the concept of trajectory does not apply any more!!

Indeed the uncertainty principle (a theorem, truly) states, e.g., in 1D case:

AxAp 2 7/2

For instance, the more precisely the position of some particle is determined, the less
precisely its momentum can be known, and vice versa.l'! The original heuristic argument that such a
limit should exist was given by Werner Heisenberg in 1927, after whom it is sometimes named the
Heisenberg principle
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THE WORKHORSE OF QM

Main problem of the mechanics:
- To predict r(t) e v(t) (trajectory) based on knowledge of forces F
- Main tool: equation of motion (Newton) a = F/m

Main problem of QM:
- To determine Y(r,t) starting from the knowledge of local potentials
- Main tool: Schroedinger’s equation (non relativistic situations!):

’ OV (7,1t
—— VY F O+ V(7 ) =ih (7,0)
2m ot
with V(7 1) = (aazz + aazz + 8822 YP(7,+) (in cartesian coordinates)
X y z

V(rt) is the potential, typically depending on r,t, ruling the dynamics of the object
Note: classically potential and force are related through F=- VU

Schroedinger equation in the 1D case:
h®> 92 L oP(x,t (partial derivatives
———Y(x,0)+V(x,t)=ih (x.1) equation)
2m ox ot
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CONCEPTUAL BASIS OF THE SCHROEDINGER’S EQ

1. It must be consistent with the de Broglie-Einstein postulates, (5-8)
A=nh/p and v=E/h
2. It must be consistent with the equation
E=p2m+V (5-9

relating the total energy E of a particle of mass m to its kinetic energy p?/2m and
its potential energy V.

3. It must be linear in W(x,2). That is, if ¥,(x,f) and W,(x,t) are two different
solutions to the equation for a given potential energy ¥ (we shall see that partial
differential equations have many solutions), then any arbitrary linear combination of
these solutions, W(x,t) = ¢, '¥(x,t) + ¢,¥,(x,t), is also a solution. This combination is
said to be linear since it involves the first (linear) power of W,(x,t) and W, (x,?); it is
said to be arbitrary since the constants ¢, and ¢, can have any (arbitrary) values.
This linearity requirement ensures that we shall be able to add together wave functions
to produce the constructive and destructive interferences that are so characteristic of
waves. Interference phenomena are commonplace for electromagnetic waves; all the
diffraction patterns of physical optics are understood in terms of the addition of
electromagnetic waves. But the Davisson-Germer experiment, and others, show that
diffraction patterns are also found in the motion of electrons, and other particles.
Therefore, their wave functions also exhibit interferences, and so they should be
capable of being added.

4. The potential energy V is generally a function of x, and possibly even ¢. How-
ever, there is an important special case where

Vix,0) = V, (5-10)

This is just the case of the free particle since the force acting on the particle is
given by

F = —0V(x,t)/ox

which yields F = 0 if ¥, is a constant. In this case Newton’s law of motion tells us
that the linear momentum p of the particle will be constant, and we also know that
its total energy E will be constant. We have here the situation of a free particle with
constant values of A = h/p and v = E/h, discussed in Chapter 3. We therefore assume
that, in this case, the desired differential equation will have sinusoidal traveling wave
solutions of constant wavelength and frequency, similar to the sinusoidal wave func-
tion, (5-1), considered in that chapter.

Using the de Broglie-Einstein relations of assumption 1 to write the energy equa-
tion of assumption 2 in terms of A and v, we obtain

h?/2mA? + V(x,t) = hv

The equation “must be” as it is...

In order to satisfy the linearity assumption 3, it is necessary that every term in the
differential equation be linear in ¥(x,), i.c., be proportional to the first power of
W(x,t). Note that any derivative of W(x,t) has this property. For instance, if we con-
sider the change in the magnitude of 2¥(x,t)/dx* that results if we change the mag-
nitude of ¥(x.t), say by a factor of ¢, we see that the derivative increases by the same
factor and thus is proportional to the first power of the function. This is true since

*[cP(x] . 0¥ (x,t)
xr ox?

where ¢ is any constant. In order that the differential equation itself be linear in
¥(x,t), it cannot contain any term which is independent of W(x,t), i.e., which is pro-
portional to [¥(x,t)]°, or which is proportional to [¥(x,f)]* or any higher power.
After obtaining the equation, we shall demonstrate explicitly that it is linear in Y(x,t),
and in the process the validity of these statements will become apparent.

Now let us use the assumption 4, which concerns the form of the free particle
solution. As suggested by that assumption, we shall first try to write an equation
containing the sinusoidal wave function, (5-1), and/or derivatives of that wave func-
tion. We have already evaluated some of the derivatives in Examples 5-1. Inspecting
these, we see that the effect of taking the second space derivative is to introduce a
factor of —k?, and the effect of taking the first time derivative is to introduce a factor
of — . Since the differential equation we seek must be consistent with (5-12), which
contains a factor of k2 in one term and a factor of @ in another, these facts suggest
that the differential equation should contain a second space derivative of ¥(x,t) and
a first time derivative of W(x,t). But there must also be a term containing a factor of
V(x.t) because it is present in (5-12). In order to ensure linearity, this term must con-
tain a factor of W(x,t). Putting all these ideas together, we try the following form for
the differential equation

*¥(x,t) aW(x,t)
ox? ot
The constants o and B have values which remain to be determined. They are used to

provide flexibility which, we might guess, will be needed in fitting (5-13) to the various
requirements it must satisfy.

o + V(x,0)¥(x,t) = 8

(5-13)
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EIGENSTATES AND EIGENFUNCTIONS

Many relevant physical situations offer for great simplifications of the mathematics

h® d°
_2m dx

If V does not depend on time, V(x) only, then: £

Y(x,t) =y (x)p(t)

>V (0) +V(x) = Ey(x)

Steady-state Schroedinger’e equation

with

and

The wavefunction for steady state
problems can factorized!!

y(x) : eigenfunction (eigenstate)
E : energy eigenvalue

5-6 REQUIRED PROPERTIES OF EIGENFUNCTIONS

In the following section we shall consider, in a very general way, the problem of
finding solutions to the time-independent Schroedinger equation. These consider-
ations will show that energy quantization appears quite naturally in the Schroedinger
theory. We shall see that this extremely significant property results from the fact that
acceptable solutions to the time-independent Schroedinger equation can be found
only for certain values of the total energy E.

To be an acceptable solution, an eigenfunction y(x) and its derivative dy/(x)/dx are
required to have the following properties:

Y¥(x) must be finite.
Y¥(x) must be single valued.
Y(x) must be continuous.

dy(x)/dx must be finite.
dy(x)/dx must be single valued.
dy(x)/dx must be continuous.
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MATHEMATICS LEADING TO STEADY-STATE EQ

o waas o ——r—m =y ———

Substituting the assumed form of the solution, W(x,t) = ¥(x)@(t), into the Schroe-
dinger equation, and also restricting ourselves to time-independent potential energies
that can be written as V(x), we obtain

3 E o2 P(x)p(t) Y (x)e(2)
ot

+ V(x)y(x)o(t) = ih

2m  o0x?
Now :
0? 0? d?
T L

the notation 9%y(x)/dx? being redundant with d*y(x)/dx? since y(x) is a function of x
alone. Similarly

Y (X)e(t) 99(t)

00 — i) 700 = o 120

dr
Therefore, we have
h? d?
~ 390D 1 V00 = i) 220
Dividing both sides of this equation by ¥(x)e(t), we obtain
L[ # e _ L de
e [ m x| V("W’(")} ~Pow

Note that the right side of (5-36) does not depend on x, while the left side does not
depend on ¢. Consequently, their common value cannot depend on either x or ¢. In
other words, the common value must be a constant, which we shall call G. The result
of this consideration is that (5-36) leads to two separate equations. One equation is
obtained by setting the left side equal to the common value

o[-

(5-36)

e e + V(x)c/:(x):l =G (5-37)
The other equation is obtained by setting the right side equal to the common value
1 do(r)

T_hc constant G is called the separation constant, for the same reason that this tech-
nique for solving partial differential equations is called the separation of variables.

do(t) iG

i~ ok

This differential equation tells us that the function ¢(¢), which is its solution, has the

property that its first derivative is proportional to the function itself. Anyone with

much experience in differentiating would not have difficulty in guessing that ¢(f) must

be an exponential function. Therefore, let us assume that the solution to the differ-
ential equation is of the form ¥

oty ="
where o is a constant that will be determined shortly. We verify this assumed solution
by differentiating it, to obtain

oft) (5-39)

de(t)
dt
which we then substitute into (5-39). This yields

= o™ = agp(t)

G
ap(f) = — n o(?)
If we set

iG

T
the assumed solution obviously satisfies the equation. Therefore
@(t) = e~ 04 (5-40)

is a solution to (5-38) or (5-39).

We see that (t) is an oscillatory function of time of frequency v = G/h. But, according
to the de Broglie-Einstein postulates of (5-8), the frequency must also be given by
v = E/h, where E is the total energy of the particle associated with the wave function
corresponding to ¢f{t). The reason is, of course, that ¢(t) is the function that specifies
the time dependence of the wave function. Comparing these expressions, we see that
the separation constant must be equal to the total energy of the particle. That is

G=E (5-42)

Using this value of G in the space equation, (5-37), that we obtained from the
separation of variables, we have

h? d*y(x)

2m  dx*

+ V(x(x) = Ed(x) (5-43)
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EXAMPLE 1 : THE FREE PARTICLE MOVING

A free particle (e.g., a photon!) which does not interact at all V=0
and moves along the X axis having a well defined impulse p
—> >
p
P (x,0) o< e =y (x)p(?)
A good solution of the w(x) = o with p = 7k

Schroedinger equation is: (de Broglie wave)

de Broglie wavelength: A ,z=2p/k = h/p

A “little” problem: it is|¥|? = 1 everywhere
- the probability of finding the particle is always 1
- the normalization factor [ | |? dx diverges!

(in agreement with uncertainty: Ap=0 =2 Ax > oo

i

\[ (we have already seen how wave packets, i.e., Fourier series,
U have to be used to solve this issue)

Figure 5-2 A very schematic picture of a wave function and its associatgd paniclg. The
particle must be at some location where the wave function has an appreciable amplitude.
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EXAMPLE 2 : STEP POTENTIAL |

For the step potential, the x axis breaks up into two regions. In the region where
x < 0 (left of the step), we have V(x) = 0, so the eigenfunction that will tell us about

the behavior of the particle is a solution to the simple time-independent Schroedinger
equation

h? diy(x)
g 2400

x<0 (6-12)

In the region where x > 0 (right of the step), we have V(x) = V,, and the eigenfunction
is a solution to a time-independent Schroedinger equation which is almost as simple
h? d*y(x)

~ e+ Vo) = EY()

The two equations are solved separately. Then an eigenfunction valid for the entire

range of x is constructed by joining the two solutions together at x = 0 in such a

way as to satisfy the requirements, of Section 5-6, that the eigenfunction and its first
derivative are everywhere finite, single valued, and continuous.

Consider the differential equation valid for the region in which V(x) = 0, (6-12).

Since this is precisely the time-independent Schroedinger equation for a free particle,

we take for its general solution the traveling wave eigenfunction of (6-8). We write
that eigenfunction as incident reflected

l[l(x) where k; = —@

Next consider the differential equation valid for the region in which V(x) = ¥,
(6-13). From the qualitative considerations of Section 5-7, we do not expect an oscil-
latory function, such as in (6-14), to be a solution since the total energy E is less than
the potential energy V; in the region of interest. In fact, those considerations tell us
that the solution will be a function which “gradually approaches the x axis.” The sim-

plest function with this property is the decreasing real exponential, which can be
written

W) @ transmitted x>0 (6-15)
Let us find out if this is a solution and, if so;-also find the required value of k,, by

substituting it into (6-13), which it is supposed to satisfy. We first evaluate

TV _ (et = K2y o)

dx?

Then the substitution yields

x>0 (6-13)

x<0 (6-14)

2
_ ;'_m () + Vo(x) = E(x)

This satisfies the equation, and therefore verifies the solution, providing

oy = V2m(Vy — E)

. E<V, (6-16)

If you bear in mind the relationship between
potential and force, you can feel that this is
very similar (classically) to a particle colliding
with a rigid wall or, even better, to a particle
climbing an inclined plane

V(=)

Vix)=Vy

Vix)=0

Classically: for E<V, there is only
reflection (no possibility to overcome
the potential barrier)

In QM there reflection is accompanied
by transmission (there is a non null
probability for transmission to occur)
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STEP POTENTIAL Il

V2m(V, — E)
h
should also be a solution to the time-independent Schroedinger equation that we
are dealing with. It is equally easy to verify this, by substitution into the equation.
But let us instead verify that the arbitrary combination of the two particular solutions

V2m(Vy — E)

Y(x) =e***  wherek, = x>0 (6-17)

Y(x) = Ce¥** + De **  where k, = W x>0 (6-18)
and where C and D are arbitrary constants, is a solution to (6-13). We calculate
d*(x _ 2m(V, — E
T - Chier + D(—kate " = ki) = 20— B) ° =By
and substitute the result into the equation. We obtain
K2 2m
— 357 Vo = EW(X) + Vo () = E¥(x)

Since this is obviously satisfied, we have verified that (6-18) is a solution. Since it
contains two arbitrary constants, it is the general solution to the time-independent
Schroedinger equation for the region of the step potential where V(x) = V,, with E <
V,. Although the increasing exponential part will not actually be used in the present
section, it will be used in a subsequent section.

The arbitrary constants A, B, C, and D of (6-14) and (6-18) must be so chosen that
the total eigenfunction satisfies the requirements concerning finiteness, single val-

uedness, and continuity, of y(x) and dys(x)/dx. Consider first the behavior of /(x) as

x = + oo. In this region of the x axis the general form of ¥(x) is given by (6-18).
Inspection shows that it will generally increase without limit as x —» + o, because
of the presence of the first term, Ce***. In order to prevent this, and keep y(x) finite,
we must set the arbitrary coefficient C of the first term equal to zero. Thus we find

C=0 6-19)
Single valuedness is satisfied automatically by these functions. To study their con-
tinuity, we consider the point x = 0. At this point the two forms of y(x), given by
(6-14) and (6-18), must join in such a way that ¥(x) and dy(x)/dx are continuous.
Continuity of y(x) is obtained by satisfying the relation
D(e—kzx)x:0= A(e““x)x=o + B(e_ik'x)x___o
which comes from equating the two forms at x = 0. This relation yields

D=A+B (6-20)
Continuity of the derivative of the two forms
i) = —k,De"*>* x>0
dx
and
) _ ik, Ae™* — ik, Be~k1x x<0
dx

is obtained by equating these derivatives at x = 0. Thus we set
—k;D(e™*%), _o = ik, A(e™) _, — ik, Ble ™) _

o
This yields
iky D=A-B (6-21)
ky
Adding (6-20) and (6-21) gives
D ik,
A —~2—(1 +E) (6-22)
Subtracting gives
D ik,
B=2(1--2 -
3 ( kl) (6-23)

We have now determined 4, B, and C in terms of D. Thus the eigenfunction for the
step potential, and for the energy E < V,, is

<0

D i ikix 2 —i —ikix
Y(x) = _2'(1 + iky/ky)e™* + 3 (1 — ik,/k))e x <

(6-24)
De k> x>0

The one remaining arbitrary constant, D, determines the amplitude of the eigen-
function, but it is not involved in any of its more important characteristics. The
presence of this constant reflects the fact that the time-independent Schroedinger
equation is linear in ¥(x), and so solutions of any amplitude are allowed by the
equation. We shall see that useful results can usually be obtained without bothering
to carry through the normalization procedure that would specify D. The reason is
that the measurable quantities that we shall obtain as predictions of the theory con-
tain D in both the numerator and the denominator of a ratio, and so it cancels out.
The wave function corresponding to the eigenfunction is

Aeiklxe~lEt/h + Be—ihxefllz‘r/h = Aei(hx—lz‘tli) + Bei(—hx—Et/i) x<0
De~h;xe—iEt/I| x> 0

¥(x.1) = (6-25)

The eigenfunction is completely determined by the
potential value (but for a normalization coefficient)
- Transmission coefficient can be derived

10
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STEP POTENTIAL WITH A FINITE LENGTH

AR -
P

WE(x, 1) W(x,t) Allt

Tunneling occurs if d <Az =
k/21r = p/h =~(2mE)

Figure 6-7 Top: The eigenfunction y(x) for a particle incident upon a potential step at x=
0, with total energy less than the height of the step. Note the penetration of the eigenfunc-
tion into the classically excluded region x > 0. Bottom: The probability density ¥*¥ =
¥*¢ = 2 corresponding to this eigenfunction. The spacing between the peaks of 2 is
twice as close as the spacing between the peaks of .

Note: in the less interesting situation where E<V, the solution can be found following the same procedure, but
the exponential behavior is no longer recovered
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EXAMPLE 3 : POTENTIAL WELL (INFINITE) |

A free particle moves along the X axis and feels two
(infinite) potential barriers at x = < a
—a/2 and x = a/2

\

_ i 0 0<z<a |
The potential reads: V(z) =
x z<0;zr>a

One can easily assume that the particle is bound to move within the two potential barriers
defining the well

¥(x,t) is given by superposition of a particle%oving to the left and one moving to the right

E

W(x,t) = A + B TH® i @=

Boundary conditions: w=0 at x =-a/2 and x = a/2

4

A=B orA=-B

Note: the derivative of the wavefunction is here non continuous because V = «
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POTENTIAL WELL (INFINITE) II

The boundary conditions (and the related physics) are the same of
the radition (photons) in the box we have already seen!!

T

We got: k,=n—
a

Being the particle free, the energy is only kinetic:

2 21712 2 2

p, hk , '

2m  2m 2ma
Confinement = energy quantization -

(set of discrete energies is allowed)

Note: n #0

The energy of the ground state cannot be zero

Example: a ball with m = 0.1 kg in a box with a=10cm > E,~10%J !l

An electron with m ~ 1039 kg in a box with a =1 nm > E,~5x10?°J ~ 0.5 eV
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Vo

POTENTIAL WELL (FINITE)

Ey 0
121
E] /\
L 0
-af2 0 +af2 /2 5 To/2 x

Figure 6-26 The three bound eigenfunctions for the square well of Figure 6-25.

Boundary conditions do not lead anymore to ¥= 0 outside the well

- there is a finite probability for the particle to tunnel outside the well
- there is a “leakage” of the wavefunction outside the well
- (the number of allowed energy levels is limited)

In any case: spatial confinement €quantized energy levels
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HARMONIC OSCILLATOR (A FEW WORDS)

) V(x)=(C/2)x2

& 3 More complicated mathematics
Interesting to note that also in this case one gets discrete

& / energy levels

\‘1“\3-

“1
Figure 6-35 The first few eigenvalues of the sim-

ple harmonic oscillator potential. Note that the Va(x)
E classically allowed regions (between the intersec- e
0 tions of V(x) and E,) expand with increasing values
" \%/ ‘ o )
Table 6-1 Some Eigenfunctions y(u) for the Simple yalx)
Harmonic Oscillator Potential, where v is ,
Related to the Coordinate x by the Equation | /\ |
u = [(Cm)/*/h 2 -~ '
Quantum Number Eigenfunctions Y1(x)
0 Yo = Age "2 | A
1 lﬁl _ Alue_uZ/z T i X
2 Uz = Ayl — 2uP)e V2 Yolx)
3 Y3 = A3(3u — 2u)e**/?
4 Yo = Ag(3 — 1207 + 4ut)e#2 /\
5 Ys = As(15u — 201> + 4u’)e 4712 ! 0 " ¥

Discrete energy levels (equispaced, here)
Eigenvalues: E, = (n+1/2)hn
(cfr. photon energy, the photon can be seen as a solution of an harmonic oscillator problem)
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SUMMARY OF EIGENFUNCTIONS/EIGENVALUES

Table 6-2. A Summary of the Systems Studied in Chapter 6

Name of
System

Zero
potential

Step
potential
(energy
below top)

Step
potential
(energy
above top)

Barrier
potential

(energy
below top)

Barrier
potential
(energy
above top)

Finite
square
well
potential

Infinite
square
well
potential

Simple
harmonic
oscillator
potential

Physical
Example

Proton in
beam from
cyclotron

Conduction
clectren near
surface of
metal

Neutron
trying to
escape
nucleus

2 particle
trying to
escape
Coloumb
barricr

Electron scat-
tering from
negatively
ionized atom

Neutron
bound in
nucleus

Molecule
strictly
confined
to box

Atom of
vibrating
diatomic
molecule

Potential and
Total Energies

E

Yy

Probability
Density

—__‘/(x)

Significant
Feature

Results used
for other
systems

Penetration
of excluded
region

Partial reflec-
tion at
potential
discontinuity

Tunneling

No reflection
at certain
cnergies

Energy
quantization

Approximation
to finite
square well

Zero-point
energy
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QUANTUM MATTER

Let’s now go back to our initial problem: how to correctly describe the matter in
quantum mechanical terms, in order to provide with a simple, yet effective, light/
matter interaction picture

The simplest matter (paradigmatic): the hydrogen atom

Very classical picture of the atom: the planetary 5 5
model Vo Ze®
m =
- Coulomb attraction provides with centripetal 3 Are 7° s 5
acceleration 0 £ 1 Ze’ B Ze” _ 1 Ze”
2 4re,r 4me,r 2 4re,r
- The mechanical energy is given by the kinetic 1 Ze
energy plus the interaction (electrostatic) energy E=— nn .
2 dre,r
A VI(r
. ‘ (" .,
—
Eg . . .
The potential is again
N 1 1 able to produce spatial
r r confinement
Ey

-> quantization of the
energy levels

L
~af2 0 +u120
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THE BOHR’S ATOM (“OLD QUANTUM THEORY”)

Bohr’s hypothesis (quantized angular [
momentum): 27
Quantized orbital radius: - n’h’e,
" mnZe’
Z%* 1 Z?
. meL-
Quantized energy: E,=- s‘sj;; = | E, = _13,5’1_2 eV

The simple Bohr’s model accounts for
quantized energy levels in the matter

Bohr’s statements:
—> orbits are possible with certain values of the radius

- the energy is quantized

—> the electron can jump from one orbit to another one (transitions)
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SCHROEDINGER’S VIEW OF THE ATOM |

h2
T VA(r0.0) + V(r0,0) = Eg(r0,0) (7-12)

where

,_1Léf,e 1 e (. a 1 &2
V= r? ar (r E) + r? sin 6 80 (sln 0(’—9) = sin? 0 3¢? (713
is the Laplacian operator in the spherical polar coordinates r, 0, ¢. For the details of
the coordinate transformation leading to (7-12) and (7-13), the student should consult
Appendix M. A comparison of the forms of the Laplacian operator in rectangular
and spherical polar coordinates, (7-8) and (7-13), shows that we have simplified the
expression of the potential energy function at the expense of considerably compli-
cating the expression of the Laplacian operator in the time-independent Schroedinger
equation that must be solved.
Nevertheless, the change of coordinates is worthwhile because it will allow us to
find solutions {o the time-independent Schroedinger cquation of the form
¥(r8.9) = ROBO)B(g) (7-14)
That is, we shall show that there are solutions Y{r,6,9) to (7-12) that split into prod-
ucts of three functions, R(r), ©(6), and ®(g), each of which depends on only one of
the coordinates. The advantage lies in the fact that these three functions can be found
py solving ordinary differential equations. We show this by substituting the product
10rm, Y(r.0.0) = R(r)@(6)®(y), into the time-independent Schroedinger equation ob-
tained by cvaluating the Laplacian operator in (7-12) from (7-13). This yields

W1 é/[,RO0 e ) &?
_,)7[7"<r2_.\*)+'2+‘i sin()@ +_I—QGE
2u 7t ar ér rsin 6 80 a0 r’sin? §  dg?
. + V(r)RO® = EROD
Carrying out the partial differentiations, we have

_ﬁ[@i)i(rzdj L RO 40\ RO &
Al dr\ dr)  Psinead\"" 3 ) T2 sinzem}

Unfortunately, the mathematics is not
trivial due to the need to express
operators in spherical coordinates

In this equation we have written the partial derivative ¢R/ér as the total deriva-
tive dR/dr since the two are cquivalent because R is a function of r alone. The
same comment applies to the other derivatives. If we now multiply through by
—2ur? sin? §/RO®A2, and transpose, we obtain

1 d*0 sin?0 d { ,dR sin® d (. dO 2, .,
= il %Sl I = il e ad .
(r dr) T (smB ) r* sin® [ E Q)

do h?
As the left side of this equation does not depend on r or 8, whereas the right side
does not depend on ¢, their common value cannot depend on any of these variables.
The common value must therefore be a constant, which we shall find it convenient to
designate as —m?. Thus we obtain two equations by setting each side equal to this
constant

6@2—_ R dr

&£

ot = —mie (7-15)
and

td dR vt 4. 4O i e . m}

—_—— P — - — lsin®— ) — L pE -V = - | -

Rdr (’ dr) @ sin 6 dO (““ 49) e BV = - Gy
By transposing, we can rewrite the second equation as

1d[ ,dRY\  2u? om 1 df. d©

EE(’ W>+ n? I'E_V(r)]_sinZO_Qsin()@ S'"OW

Since we have here an equation whose left side docs not depend on one of the vari-
ables and whose right side does not depend on the other, we conclude again that both
sides must equal a constant. It is convenient to designatc this constant as /(/ + 1).
Thus we obtain, by setting each side cqual to /(I + 1), two more equations

| d[{. dO\ mo
_ 40\  mio _ 7.1
sin 0 d0 (S'" o de) *nzg ~ 1O (7-16)
and
1d{,dR 2u R
14 _ —1+n R 717
S (r dr) + BB - VOR =10+ 15 (7-17)

We see thal the assumed product form of the solution, ¥{r,8,¢0) = R(rNO(B)D(p), is
valid because it works! We also see that the problem has been reduced to that of
solving the ordinary differential equations, (7-15), (7-16), and (7-17), for ®(¢), B(8),
and R(r).

In solving these equations, we shall find that the equation for ®(¢) has acceptable
solutions only for certain values of m,. Using these values of m, in the equation for
@(8), it turns out that this equation has acceptable solutions only for certain values
of 1. With these values of ! in the equation for R(r), this equation is found to have
acceptable solutions only for certain values of the total energy E; that is, the energy
of the atom is quantized.
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7-5 EIGENVALUES, QUANTUM NUMBERS, AND DEGENERACY

One of the important results of the Schroedinger theory of the one-electron atom is
the prediction of (7-22) for the allowed values of total energy of the bound states of
the atom. Comparing this prediction for the eigenvalues

E VAL 13.6eV

" (dmeg) 270t o

with the predictions of the Bohr model (see (4-18)), we find that identical allowed en-
ergies are predicted by these treatments. Both predictions are in excellent agreement
with experiment. Schroedinger’s derivation of (7-22) provided the first convincing
verification of his theory of quantum mechanics. Figure 7-3 illustrates the Coulomb
potential V(r) for the one-electron atom, and its eigenvalues E,.

What is the relation between the Coulomb potential and its eigenvalues, and the
potentials studied in Chapter 6 and their cigenvalues? One obvious difference is that
the quantum mechanical calculations leading to the eigenvalues of the Coulomb
potential are appreciably morc complicated. But the Coulomb potential is an exact
description of a real threc-dimensional system. The potentials previously treated are
approximate descriptions of idealized one-dimensional systems, which are designed
to simplify the calculations. Part of the complication for the Coulomb potential is
also due to its spherical symmetry, which forces the use of spherical polar coordinates
instead of rectangular coordinates.

The similarities are much more fundamental than the differences. For the Coulomb
potential, as for any other binding potential, the allowed total energies of a particle
bound to the potential are discretely quantized. Figure 7-4 makes a comparison be-
tween the allowed energics for a Coulomb potential and for several one-dimensional
binding potentials. In this figure the Coulomb potential is represcnted on a crosscut
along a diameter through the one-electron atom. Note that all the binding potentials
have a zero-point energy. That is, in all cases the lowest allowed value of total energy
lies above the minimum value of the potential energy. Associated with its zero-point
energy. the one-electron atom has a zero-point motion like other systems described
by binding potentials. In the following scction we shall sce that this phenomenon can
give us a basic explanation of the stability of the ground state of the atom,

0 r
.55 P———

—-151 /——vEg 4
-339

Ey

Energy (eV) —

136 E,

Vir)

Figure 7.3 The Coulomb potential V(r) and its eigenvalues £,. For large values of n the
eigenvalues become very closely spaced in energy since £, approaches zero as n
approaches infinity. Note that the intersection of V(r) and E,, which defines the location
of one end of the classically allowed region, moves out as n increases. Not shown in this
figure is the continuum of eigenvalues at positive energies corresponding to unbound
states.
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Table 7-2 Some Eigenfunctions for the One-Electron Atom

Quantum Numbers
n l m, Eigenfunctions
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Practically the same eigenvalues than in the
Bohr’s atom are found

Eigenfunctions can be also obtained (cfr.
“orbitals” in chemistry)
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for different “quantum numbers”
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Figure 7-5 The radial probability density for the electron in a one-electron atom for 1 =
1, 2, 3 and the values of / shown. The triangle on each abscissa indicates the value of
T as given by (7-29). For n = 2 the piots are redrawn with abscissa and ordinate scales
expanded by a factor of 10 to show the behavior of P,(r} near the origin. Note that in the
three cases for which /=1{,,, =n — 1 the maximum of P,(r) occurs at TBohr = nzaOIZ,

varhioale fm fmdimmiaa Lo aL_ 2

Dependence of the eigenfunctions on r

Basically, the simple Bohr’s model is
confirmed

Eigenfunctions (stationary states) and
eigenvalues (energy levels) can be found

analytically

Level degeneracy and specific symmetrical
properties are found (they depend on the
specific atom considered)

The approach holds for all atoms (and
molecules, and, with suitable
modifications/simplifications, solid and
liquid matter), but the analytical solution is
no longer possible
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CONCLUSIONS

QM is a very powerful tool to explore the matter

QM shows, among others, that spatial confinement implies the occurrence of
discrete energy levels (and states)

Roughly speaking, all the main aspects highlighted in the simple problems
(potential well, harmonic oscillator, hydrogen atom) can be at some extent
transferred to the matter

We have now all the ingredients to afford a description of light/matter
interaction which will eventually lead to discover amplification of light!
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