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OUTLOOK

* We have seen how a quantum system, that is matter with discrete energy levels
accessible through interaction with photons, can amplify radiation

* Moreover, such amplification involves stimulated emission, hence is in principle well
in agreement with the mechanisms leading to coherence (stimulated emitted
photons are ideally indistinguishable each other!)

 However, the laser is not an amplifier, but rather a source, that is an oscillator:
v Need for optical cavities
v Need to balance between gain and loss
v Need to analyze the optical properties (longitudinal and transverse modes)

Main objective: to describe the optical cavity, a key ingredient for laser operation

Secondary objective: to go deeper into the laser technologies and discuss motivations
and consequences of technical choices pertaining to laser operation
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AMPLIFIER-> OSCILLATOR

Vivid example: electronics
amplifier - oscillator through application of a positive feedback

Feedback oscillator [edit)

The most common form of linear oscillator is an electronic amplifier such as a transistor or op amp
connected in a feedback loop with its output fed back into its input through a frequency selective
electronic filter to provide positive feedback. When the power supply to the amplifier is first
switched on, electronic noise in the circuit provides a signal to get oscillations started. The noise
travels around the loop and is amplified and filtered until very quickly it becomes a sine wave at a
single frequency.

Feedback oscillator circuits can be classified according to the type of frequency selective filter

they use in the feedback loop:I™ Amplifier

, , (Self) oscillation is obtained by re-
Block diagram of a feedback linear &J dina back to the i t part of th
oscillator; an amplifier A with its outout v, fed Y/ [ A [—eV |sen INg back 10 he Input part of the
back into its input v; through a fitter, B(jw). (amplified) output

» There is fregency selection

Bliw) t— » Some kind of ’anger is needed
to start the oscillation

Feedback
Network
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FEEDBACK AND OPTICAL CAVITY

In optics, feedback can be achieved in a very straightforward (apparently...) way:
the active medium is placed within a pair (at least) of mirrors

v/
T —— : > The set of components
D — TR ' . providing with optical
c* - ; ) feedback (intentional!) is
e > called optical resonator or
Z optical cavity
Mirror [ ] I ‘ ‘ I Mirror
“pump”’

Note: the presence of the cavity will eventually affect the frequency response of the
oscillator, that is the wavelength emitted by the laser, as well as its optical properties

The optical cavity owns a primarily “longitudinal” character as we have already
discussed for the photon in the box and the quantum well systems, both treated
as one-dimensional (i.e., longitudinal) problems

However, the transversal behavior is important as well
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THE SIMPLEST LASER CAVITY

Remember: the cavity must allow for photon extraction if we want the laser photons to be used!
The simplest way to model the cavity (model, not realization!) is the so-called ring cavity:
4 mirrors forming a ring, one of them partially transmitting (reflectivity < 1)

Pum
P Roundtrip time t~ L, ,/c
(L, total optical length, assuming a
' r<1, t=(1-r)>0  refractive index n~1)
> output

I
[EY

r

(r : mirror reflectivity, that is the ratio

between incident and reflected

power; virtually, it can be decided
r=1 when the mirror is produced)

Active medium

I
_

r

Trigger of the laser action:

a “fluctuation”, e.g., a spontaneously emitted photon going by chance along the
cavity, i.e., along the correct path

We can assume a constant rate for energy losses from the cavity due to photon
leaving the cavity itself to be used as laser photons

dE E : e.m. energy within the cavity

E =—Fo— E(t)= Eoe_at o.: rate of energy loss from the cavity
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Q-FACTOR OF THE RESONATOR

In physics and engineering the quality factor or Q factor is a dimensionless
parameter that describes how under-damped an oscillator or resonator is, !’
or equivalently, characterizes a resonator's bandwidth relative to its center
frequency.?! Higher Q indicates a lower rate of energy loss relative to the
stored energy of the resonator; the oscillations die out more slowly. A

pendulum suspended from a high-quality bearing, oscillating in air, has a high Bandwidth
Q, while a pendulum immersed in oil has a low one. Resonators with high e “
quality factors have low damping so that they ring longer.

-3 dB

i f )
The bandwidth, Af or f, to f,, of a damped oscillator is shown on &-J

a graph of energy versus frequency. The Q factor of the damped
oscilltor, or fiter, is f / A f The higher the Q, the narrower and

Definition: 'sharper' the peak is.
Quality-factor: Q =27 E, . ,/E

tored *lost per cycle

The higher the Q-factor,
the sharper the frequency response

Assuming constant loss rate: _
per each roundtrip the energy stored into the cavity decreases by a fraction ar Q, oundtr ’E_ Z/TTC{(aLtOJ
per each frequency cycle the decrease will be aT = a/v Qcycle‘ mv/a =w/o

The Q-factor is inversely proportional to the loss rate
Physically, the larger is the dissipation, the lower is the quality and the broader is the bandwidth
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IDEAL CAVITY AND LOSSES

e.m. energy within a cavity can be written as: E, ., = SL,,.u, (with u, e.m. energy density,
S cross section of the cavity, i.e., of the beam)
The intensity (i.e., the module of Poyting vector) onto the output cavity mirror will be:

| = Scu, (with c speed of light, n = 1 is assumed)
Intensity lost at the output:

" =Scu, (1-r) (with r < 1 mirror reflectivity)

o _ Examples:
Energy lost per cycle, i.e., in the period T: L =50cm, r=0.98, A= 0.6 um=> Q~ 2x107 (HeNe)
E...=1 T=1"Afc=Scu,(1-r)A/c=SAu,(1-r) | L=0.5mm, r=0.30, A=0.8 um-> Q~ 6x10° (diode)

Q-factor of the risonator:

Q= Estored/Elost = ZnSLtotu\/((l 'r)SA’Uv) = Zﬂ(Ltol//l)/(l -r)

The Q-factor is limited by the need of taking out photons from the cavity
In ideal cavities, the main dependence is on the mirror reflectivity (and on cavity length)

g

Q-factor depends on the optical and geometrical features of the cavity

Qualitatively: to get lasing action gain > losses
(the Q-factor is not limiting the lasing action in high gain active media)
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GAIN AND LOSSES IN THE THREE LEVEL SYSTEM

Let’s now look for a quantitative expression of the gain vs losses concept
We will use the three level system whose master equations we have already mentioned

Gain of the three G= R(2A32 + AZI)_ A (Aax + Asz) (C) Nho B, F(w) 232»/\21. t
. = - : pumping rate
level medium A, [A_‘1 +A,, n V F(w): lineshape (we will seel)
For I << 1, I(z,0) =1, exp(G z) "Inverse Beer's Law"
For I,>> 1 . (z,0)=1+1, Li i
or ,_,>> erit (z 0)) o+ crit gz Inear regume r]_ r2
: s . L
Consistency condition: at the end of the cavity (z=L) | g »Z
wanlt to_ retrieve at le_ast the intensity I_O present_ at the Here considered:
beginning of the cavity --> threshold in the gain two mirror cavity with reflect.
r,r,and length L
I, exp(—a 2L)exp(G, 2L) r r, =1, [V-9a] Further losses assumed with
rate o

or [V-9b] || Athreshold value is

found in the gain in order

where o is included to account fof residual cavity losses and the 7, 's are the respective | | 10 allow for consistency

reflectivity's of the two mirrors.
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GAIN AND LOSSES II
IL=rn[l+1,G2L]

L]
I,=21,,GL -1

n

At large intensity (I,>>1_,;,), that is well above threshold:
the “linear regime” applies

Let’s now transfer the threshold from the gain G on the pumping rate R

We can write: R = Ay (A31 + Asz) Losses due to the spontaneous emission!
G _R-R With: T (24nt4y)
Gx R,—R, A, [A3‘- +A32] = L4
R,-R, =G, (2A32 +A21) [_) Nho B, F(o)

Therefore Equation [ V-10b ] becomes

| |
I(R)= ‘"'g”*]{R—R"}:{r 1 2L, g L {R-R)£C(R-R)).

[ 1 R, -
_qj Ra— R, — -1 [R -R ] —
l_" r, J rr, J The intensity depends on
pumping, but a threshold
e.m. intensity (at the Depends on the cavity design exists
beginning or the end of the and on the active medium

cavity, thanks to consistency)
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THRESHOLD FOR LASER EMISSION

Gain must surpass losses
The output intensity depends on
pumping rate R

6.1 ‘

Lasing action possible only above a threshold

L |
¢ | 2
% Note: the linear behavior
tends to saturate, at some
2+ 7 point, in real laser systems
R ’
8 ’
/ . :
\ / Optical "pumping” rate
g ——+———— 1.0'5\? Power vs current plot in diode lasers
Note: E
. ops LASEN OPFERAION
the shown behavior assumes the ability to externally 8 IRRLANG EUao
control the pumping rate R . This is not always possible, §
but in the cases where it is possible, the appearence of SrONTANEOUS
the threshold is clearly seen (e.g., in diode lasers by ey L LSDPEADN ]
. . . . m
increasing the injected current) / °
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GAIN AND FREQUENCY

Once more we recall the gain of the active medium (in the three level system):

Lineshape of the
G= R(24,+A;)- Ay (4, +A,) (E) Nho B@ active medium

Ay Ay +A] n 14

The gain of the active medium is a function of the frequency

Assuming an ideal quantum system, the energy conservation involved in the stimulated emission
would lead to a lineshape strongly peaked around the transition frequency
(“delta”-like behavior)

In real systems the energy conservation must be “relaxed”

The transition “lines” get broader!!

(By the way, we saw this in classical terms, remember that the Lorentzian-like lineshape in absorption
was broad, with a width proportional to the friction (viscous) coefficient)

Main mechanisms for “line broadening”:
- Homogeneous broadening (all elements of the system behave statistically in the same way)
- Inhomogeneous broadening (every element behaves in its own way and the final result implies average)
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HOMOGENEOUS BROADENING

Let’s consider the simplest system, i.e., an atom in a gas (most results will hold true in other
systems, as well)

We mentioned that all excited states have a natural lifetime t,, ultimately ruling the
spontaneous emission (t,,= 1/A,; for a two level system)

According to Heisenberg: AwAt,, 227 - Aw= 271/, (thatisAv2 1/7,#0)
(typical values for an atomic gas and electric dipole transitions: Av=0.1-1 GHz)

More realistic picture, accounting for relaxation processes (typically, non radiative):
1/T o = 1/1:5p +1/7 - A ~ 1-5 GHz, and even more

nonrad

Note: non radiative de-excitation processes are frequently associated with collisions
Collisional rate depends also on the density (and temperature)

In active media at the solid or liquid state very short non radiative lifetimes can be esaily
found leading to remarkable broadening (up to tens of GHz, at room temperature!)

Other homogeneous broadening effects may occur, related for instance to the saturation effects

(I>>1_, ) or to finite interaction times, and so on
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INHOMOGENEOUS BROADENING |

3.2 Doppler Width

Generally the Lorentzian-line profile with the natural linewidth év,, as dis-
cussed in the previous section, cannot be observed without special tech-
niques, because it is completely concealed by other broadening effects. One
of the major contributions to the spectral linewidth in gases at low pressures
is the Doppler width, which is due to the thermal motion of the absorbing
or emitting molecules.

Consider an excited molecule with a velocity v = {vx,Vy.v,} relative to
the rest frame of the observer. The central frequency of a molecular emis-
sion line that is w, in the coordinate system of the molecule, is Doppler
shifted to

Wy =y + kv (3.38)

for an observer looking towards the emitting molecule (that is, against the
direction of the wave vector k of the emitted radiation; Fig.3.6a). The ap-
parent emission frequency w, is increased if the molecule moves towards
the observer (k-v > 0), and decreased if the molecule moves away (k-v <
0).

Similarly, one can see that the absorption frequency wy of a molecule
moving with the velocity v across a plane EM wave E = Egexp(iwt-k-r) is
shifted. The wave frequency w in the rest frame appears in the frame of the
moving molecule as

w=w-kv,

The molecule can only absorb if & coincides with its eigenfrequency wy.
The absorption frequency w = w, is then

W, =wg + kv, (3.39a)

As in the emission case the absorption frequency w, is increased for k-v > 0
(Fig.3.6b). This happens, for example, if the molecule moves paraltel to the

Z
-~ v>
- v =
k k
y O
Detector
0 i e | e
b g =0y + K-V =0 -k-
o =Wg+kv

X
a) b)
Fig-3.6. (a) Doppler shift of a monochromatic emission line and {b) absorption line

wave propagation. It is decreased if k-v < 0; e.g., when the molecule moves
against the light propagation. If we choose the +z direction to coincide with
the light propagation, (3.39a) becomes with k = {0,0,k,) and |k| = 27/,

w, =wp(l +v,/c). (3.39b)

Note: Eqs.(3.38 and 39) describe the /inear Doppler shift. For higher accu-
racies the quadratic Doppler effect has to be considered in addition
(Sect.14.1).

At thermal equilibrium, the molecules of a gas follow a Maxwellian
velocity distribution. At the temperature T, the number of molecules
n;(v,)dv, in the level E; per unit volume with a velocity component be-
tween v, and v, +dv, is

N . 2
n;(v,)dv, = Vp—‘\/}_re valvp) gy, (3.40)

where N; = fn;(v,}dv, is the density of all molecules in level E;, vy =
(2kT/m)1/2 is the most probable velocity, m is the mass of a molecule, and
k is Boltzmann’s constant. Inserting the relation (3.39b) between velocity
component and frequency shift with dv, = (c/wg)dw into (3.40) gives the
number of molecules with absorption frequencies shifted from wy into the
interval from w to w+dw

_ c R _ c(w-wa) 2
n(w)dw = N; wovp\/?w[ { ] ]dw. (3.41)

Wo Vp

Since the emitted or absorbed radiant power P(w)dw is proportional to the
density n;(w)dw of molecules emitting or absorbing in the intervall dw, the
intensity profile of a Doppler-broadened spectral line becomes

1(w) = xoexp[ - [Mlz] . (3.42)

(.IJOVP
This is a Gaussian profile with a full halfwidth
sup = 2ViZugvy/c = (2 )VEKTInZ/m , (3.432)

which is called the Doppler width. Inserting (3.43) into (3.42) yields with
1/(41n2) = 0.36

(“’—"’“)f—] . (3.44)

M) = l"em[' 0.368wp?
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INHOMOGENEOUS BROADENING II

Note that swp, increases linearly with the frequency w, and is proportional
to (T/m)!/2. The largest Doppler width is thus expected for hydrogen M=
1} at high temperatures and a large frequency w for the Lyman « line.

Equation (3.43) can be written more conveniently in terms of the Avo-
gadro number N, (the number of molecules per mole), the mass of a mole,
M = N,m, and the gas constant R = N, k. Inserting these relations into
(3.43) gives for the Doppler width

Swp = (2w /c}V2RT In2/M , (3.43b)
or in frequency units, using the values for c and R,

Svp = 7.16:1077 v vVT/M  [Hz]. (3.43¢)

Example 3.2

a) Vacuum ultraviolet: For the Lyman « line (2p — s transition in the H
atom) in a discharge with temperature T= 1000 K, M =1, A= 1216 A, » =
247-10% 571 — gup = 561010 Hz, §ip = 2.8-10-2 A,

b) Visible spectral region: For the sodium D line (3p — 3s transition of the
Na atom) in a sodium-vapor cell at T = 500 K, X = 5891 A, vy = 5.1-1014
st — dvp = 1.7-10°9 Hz, §ip = 1102 A,

¢) Infrared region: For a vibrational transition (J;,v;) ¢ (J,,v,) between
two rovibronic levels with the quantum numbers J,v of the CO, molecule
in a CO, cell at room temperature (T = 300K), A = 10 pm, v = 3-1013 51,
M=44 - EVD = 5.6'107 HZ, SAD =0.19 A.

Av [Hz] = 7.16x107 /A NT [KI/M [a.m.u]

Inhomogeneous broadening
dominates when the absorbing
species are in (almost free)
motion, such as in gas

Typically Av ~ several GHz
(at room temperature)

depending on the velocity

Doppler effect produces a shift in the resonant frequency of each single species of the sample

» At the thermal equilibrium the velocity is distributed according to Maxwell-Boltzmann
» A Gaussian lineshape is typical in inhomogeneous broadening
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EXAMPLE OF WIDTHS FOR COMMON ACTIVE MEDIA

-

Full-width at half-maximum

. . . (FWHM) in typical
Typical gain band\W oty oo

Gam medium | Wavelength | Bandwidth (Hz)
HeNe 6328 A 1.510°
Nd:glass 1.06 um 31012
Nd:YAG 1.06 um 120 10°
Ruby 6943 A 6 1010
Argon 1ons 350-520A |3.510°
Ti:Saphire 0.7-1.1 um 100 1012
Rh.-6G dye 0.56-0.64 um |5 10"
CO, gas 10 um 60 106
Er doped fiber |1.55 um 4 1012
Diode lasers 0.7-1.6 um 1013

Remember! Since v = ¢/A (in the vacuum),
Av = AA (c/A?) --> DA = A Avv

bandwidth

Y,

Frequency

Gain

Typically, gas media have narrower
bandwidth (GHz) than liquid or solid
state (up to THz)

In solid/liquids the broadening may
be due to intense non radiative de-
excitation or to the appearence of
“bands” rather than discrete levels
(we’ll see more)

The large bandwidth of some active
media (e.g., Ti:Sa, dye solution, diode
lasers) open the possibility to tune

the emission on a large range
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INTERPLAY BETWEEN ACTIVE MEDIUM AND CAVITY

Because of unavoidable broadening effects (e.g., in gases) or thanks to the use of specific
active media (e.g., liquid or solid-state), the active medium can amplify in a rather broad

frequency range @

A characteristic optical gain curve (or linewidth, or lineshape) F(w), or F(A), appears

Optical Gain Optical Gain
4 !

F(w) Or (the shape will not  F(A)
always be the same,

since A = c¢/(211w))

This will “compete” with the allowed modes
supported by the cavity!!

Allowed Oscillations (Cavily Modes)

" l/u“’l =
Remember: ' .
J* ’ k. =m/L :
Stationary EM oscillations _ ..
Mirror  Plane- parallel” cavity 7 — mA/2 =L > A
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LONGITUDINAL MODES OF THE CAVITY

Modi lungitudinali

Longitudinal modes involve light waves which travel parallel to the laser cavity axis. When
such a wave is reflected from a cavity mirror, the reflected wave combines with the incident wave
to give rise to a standing or stationary wave as indicated in Figure 5.1. To simplify the diagram, the
amplifying medium has been omitted and, provided that it can sustain several modes of oscillation
at the same time. it is not necessary to consider it to understand the origin of multiple longitudinal
modes. Amplifying media that can support the simultaneous oscillation of a number of longitudinal
modes are referred to as being inhomogeneously broadened.

Total Partial
reflector reflector

standlng viave
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Figure 5.1.
Standing waves can be sustained within the laser cavity only if the length of the cavity is equal to an
integral number of half wavelengths. This condition can be written as:
(5.1)

Quantizzazione modi

Nella 3.1 n indica I'indice di rifrazione del mezzo che riempie la cavita. For most lasers, values of s
larger than a million are typical. Because of this. different longitudinal modes corresponding to
successive values of s have wavelengths that are different, but only slightly different. It is a simple
matter to write down the above condition in terms of the frequency of a mode rather than its
wavelength and. from the resulting expression, calculate the difference in frequency between two
successive longifudinal modes. La separazione in frequenza tra due modi longitinali adiacenti si
ottiene dalla (5.1) e vale

nl =5 3/2, con s intero

Free spectral range ©-2)
Plane parallel cavity

Av=c/2nL

In a plane parallel cavity:
Avy, [GHz] ~ 1.5/(nL [m]) , with n refractive index

Examples: n =1, L =50 cm -->Av,, = 3 GHz (HeNe laser)
n=3.3, L =0.5 mm -->Av,, = 103 GHz (diode laser)

Definition of free spectral range:
distance in frequency (or in
wavelength) between two subsequent
modes supported by the cavity

For a plane parallel cavity (plane parallel
mirrors, spaced by L), assuming an active
medium with refractive index n

(hence, v, = c/n):

Allowed modes:

km+1 = (m+1)7T/L = wm+1/vfase
K, =mm/L = w, NV

A(J‘)fsr = Wy — Wy = Vfaserr/ L

Av,, = Aw,,/(2m) = c/(2nL)

The cavity behaves like a frequency filter

Typically, L >> A --> m huge
--> the separation is rather small
compared to the emitted frequency

Note: the frequency filter operation can be
exploited also to build frequency-selective mirrors
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LASER EMISSION SPECTRUM |

Loop
G
Let's assume a gain curve F(w), or G,(v), as mentioned a'GnL
here, broader that the Av, free spectral range of the
cavity, as customarily occurring
. . . 1.0
Lasing will occur at those frequency which
are allowed by the cavity and correspond
i Laser
to a gain above threshold Otput
Power

There might be a competition between different
longitudinal modes above threshold: either lasing will take
place at a selected frequency (usually, the mode with the
highest gain) or there will be multimode operation

intenasity
A

b Longitudinal
Cavity Modes Gain Curve '/: Eﬁ?ﬁ&em

Distance

& ™ Q AV.SZL Lonoitudinal

/< 1 Modes

Lt e dands A, ... J.__[-eser
e N hreshold
// | e
\ Yo | Frequency V
' v Longitudinal

Modes

Linewidth

of One
Longitudinal
Mode

L

Vo2 Vm1 V' Vet Vinez Frequency v

Multimode (longitudinal)
operation leads to random jumps
(jitter) in the emission frequency

Fig.5.26. (a) Stable multimode operation of a HeNe laser. (Exposure time 1s). (b) Ty
short-time exposures of the multimode spectrum of an argon laser superimposed «

the same film to demonstrate the randomly fluctuating mode distrihntinn

f
requency
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LASER EMISSION SPECTRUM I

SCI CIISSIUIL

L

Resonator Modes

My
Vo R R B .
Spectfql //ﬁ\ 4 (‘

5.3.1 Active Resonators and Laser Modes

Introducing the amplifying medium into the resonator changes the refrac-
tive index between the mirrors and with it the eigenfrequencies of the reso-
nator. We obtain the frequencies of the active resonator by replacing the

mirror separation d in (5.52) by Assume active medium length

gain profile /

|
|
|
|
|
/] : N
Threshold |
|
|
|
|

M

1
Vi Yo V2 A
Fig.5.21. Gain profile of a laser transition with resonator eigenfrequencies ¢
modes

gain of active medium

1

According to (5.8) the gain profile Gy(v) = exp[-2a(v)L] depends o
the line profile g(r-v,) of the molecular transition E,—E,. The threshol
condition can be illustrated graphically by subtracting the frequency-de
pendent losses from the gain profile. Laser oscillation is .possilble at all fre
quencies vy, where this subtraction gives a positive net gain (Fig.5.23).

-20L  -2al-y

-0

net gain region\
AN

Y -
I

A AN i

™

2al-y=0

A
Fig.5.23. Reflection losses of a resonator (lower curve), gain curve o{v) (upper curve
and net gain Aa(v) = -2La(v)-7(v) as difference between gain (x < 0) and losse
(middle curve). Only frequencies with Aa(v) > 0 reach oscillation threshold

* T L with refractive index n an

4 =@-L)+ @)L =d+(n- DL intermirror distance d ?5‘57)
where n(v) is the refractive index in the active medium with length L. The
refractive index n(v) depends on the frequency v of the oscillating modes,
which are within the gain profile of a laser transition where anomalous
dispersion is found. Let us at first consider how laser oscillation builds up
in an active resonator.

If the pump power is increased continuously, threshold is reached first
at those frequencies which have a maximum net gain. According to (5.5)
the net gain factor per round trip

Gain per roundtrip (a(v) is the
gain curve, y(v) is the Ios§5_53)
rate)

is determined by the amplification factor exp[-2a(v)L] which has the fre-
quency dependence of the gain profile (5.8), and also by the loss factor
exp(-24d/c) = exp[-7(v}] per round trip. While absorption or diffraction
losses do not strongly depend on the f requency within the gain profiles of a
laser transition, the transmission losses exhibit a strong f; requency depend-

ence, which is closely connected to the eigenfrequency spectrum of the
resonator. This can be illictratad ac fallawe

G(v,2d) = exp[-2a(¥)L - 7v(v)],

A mathematical description can be derived
for the “active resonator”

The “active resonator” is the optical cavity
with the active medium enclosed in it
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LASER LINEWIDTH AND FINESSE

So, the laser frequency is ultimately defined by the interplay between the gain and the optical cavity

An important parameter ruling the laser linewidth (monochromaticity!) is the finesse of the cavity
related to the bandwidth of the optical cavity, hence on its Q-factor

The finesse of an optical resonator (cavity) is defi- Rather than Q-factor, often Finesse is
ned as its free spectral range divided by the (full considered

width at half-maximum) bandwidth of its resonan-

ces. It is fully determined by the resonator losses Finesse (F) =

and is independent of the resonator length. If a
fraction p of the circulating power is left after one
round-trip (i.e., a fraction 1- g of the power is
lost) when there is no incident field from outside
the resonator, the finesse is

free spectral range/bandwidth

(with bandwidth the fwhm of the linewidth of
the resonator)

F= i T _ 27 Thatis: Q-factor = F wyAw,,,
2 . 1 - V a 1 - a 1 B a 100 T T T T T T T T
arcsin T Assuming cavity losses due only. to mirror
27/ o ** I'reflectivity (in a symmetric plane parallel cavif)

20

10

finesse

The approximation holds only at low losses, i.e., high finesse

5t

2t

10 20 30 40 50 60 70 80 90 100
mirror reflectivity (%o)
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IMPROVING THE Q-FACTOR

One possibility is to use an intracavity etalon (tilted) active as an additional frequency filter (transmission)

Ik ~ In optics, a Fabry-Pérot interferometer or etalon is typically made of a transparent plate with two reflecting swfaces, or
a two parallel highly reflecting mirrors. (Technically the former is an etalon and the latter is an interferometer, but the
- // // terminology is often used inconsistently. ) Its transmission gpectrum as a function of wavelength exhibits peaks of large
Q 9 transmission corresponding to resonances of the etalon. It is named after Charles Fabry and Alfred Perot 1 "Etalon” is from
M | d X~ “%M the French étalon, meaning "measuring gauge" or "standard (2]
- 2

Fig.5.36. Single-mode operation by inserting a tilted etalon inside the laser resonator

The phase difference between each succeeding reflection is given by &:

2% .
=< )‘ancosé. Note:

this is not that different from “Bragg diffraction”!

N
N T (1- R)’ 1

T, — : _ __
1+ R?—2Rcos(6) 1+ Fsin®*(5)

. Difference4r?
the optical

1 — )2, .
& Fabry-Pérot etalon. Light enters the etalon and where ( ) is the coefficient of finesse.

undergoes multiple internal reflections.

The varying transmission function of an etalon is caused by interference between the multiple reflections of light
between the two reflecting surfaces. Constractive interference occurs if the transmitted beams are in phase, and
this cotresponds to a high-transmission peak of the etalon. If the transmitted beams are out-of-phase, destractive
interference occurs and this corresponds to a transmission minimum. Whether the multiply-reflected beams are
in-phase ot not depends on the wavelength (A) of the light (in vacuum), the angle the light travels through the
etalon (B), the thickness of the etalon () and the refractive index of the material between the reflecting sutfaces (»).
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If both sutfaces have a reflectance R, the transmittance function of the etalon is given by

path: 2nicose p—_ AR Finesse for a Fabry-Perot etalon
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HIGH FINESSE FABRY-PEROT ETALONS

T — (1 - H)2 o 1
© 1+ R?*—2Rcos(d) 1+ Fsin*(3)
F— 4R i
where (1-R) is the coefficient of finesse.

e W e

Transmission 7, —»

s

Wavelength A

<— Reflection R. 3

:

Note the log scale!
| ——r

Finesse #

05 06 0.7 08 09 1
Mirror reflectivity R

By using very high reflectivity mirrors,
very high finesse can be achieved

Typical linewidths for continuous wave (CW) lasers:

- Gas lasers (HeNe, Ar*,...): Av<1 MHz (down to < 1 kHz for ultrastable cavities)

- Solid state lasers (Nd:YAG, Ti:Sa, ...): Av=1 MHz (down to < 10 kHz if etalon-equipped)
- Dye lasers: Av=100 MHz (down to 100 kHz if etalon equipped)

- Diode lasers: Av=1 MHz (down to < 10 kHz if coupled to an etalon equipped ext cavity)

Warning: thermal and mechanical drifts may produce long-term fluctuations
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QUANTUM LIMIT

Schawlow—Townes Linewidth

o . . . Quantum fluctuations (e.g., related to
Definition: linewidth of a single-frequency laser with quantum noise L
only spontaneous em|SS|on) pose a

Even before the first laser was experimentally demonstrated, fundamental lower limit to the laser
Schawlow and Townes calculated the fundamental {quantum) linewidth

limit for the linewidth of a laser [1]. This lead to the famous
Schawlow-Townes equation.

2
Ap. = 7 hv (Av,) Es.: HeNe, hv=2eV, AV =1MHz, P, ,=1mW > Av, .~ 1mHz!!
laser .T.
P

out

with the photon energy hv, the resonator bandwidth Ave (full width at half-maximum, FWHM), and the
output power Py, It has been assumed that there are no parasitic cavity losses. {Compared with the
original equation, a factor 4 has been removed because of a different definition of the resonator
bandwidth.)

It is often claimed that the phase noise level corresponding to the Schawlow-Townes linewidth is a result
of spontaneous emission into the laser mode. although this picture is intuitive, it is not completely correct.
Both the laser gain and the linear losses of the laser resonator contribute equal amounts of quantum noise
to the intracavity light field. This means that even when replacing laser gain with some noiseless
amplification process, the phase noise would only decrease to half of the Schawlow-Townes value [2].

Carefully constructed solid-state lasers can have very small linewidths in the region of a few kilohertz,
which is still significantly above their Schawlow-Townes limit: technical excess noise makes it difficult to
reach that limit. The linewidth of semiconductor lasers is also normally much larger than according to the
original equation {without the « factor). This, however, is largely caused by amplitude-to-phase coupling
effects {which can be quantified with the linewidth enhancement factor), and not by technical excess
noise.

|”

Usually, many other “technological” broadening effects occur
leading to linewidth >> Schawlow-Townes
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AT THE OTHER SIDE: LASER TUNABILITY

In some cases (notably, dye laser, but also Ti:Sa and some diode lasers) the gain curve is broad
= Tunability over a wavelength range can be achieved

(a)

In these cases, the optical cavity includes - Dyes tunability
a component able to provide with coarse e ot || comum om0
. . - oes y ¥ ’ s BOA RHODAMIG e )
frequency filtering, usually joined to a A () e T P e
high finesse element (e.g., etalon) § | ' \ [ wm
E 1 w‘m : ‘

Y § - \ :

o1 A

e;}g{,’;’" e V §\ Littrow 260 400 440 480 620 580 S00 6€s0 B8O 720 760 ©40 020

filter oylindrical grating WAYELENGTH (nm)

lens L N

pump laser

Fig.5.44. Short Hinsch-type dye-laser cavity with Littrow grating and mode selection
either with an internal etalon or an external FPI as "mode filter" [5.57]

When there 15 a need to separate light of different wavelengths with high
resolution, then a diffraction grating 1s most often the tool of choice. This "super
“ ” . . prism" aspect of the diffraction grating leads to application for measuning atomic
The ) coarse freq l'fe ncy se | ECl.'I onis spectra i both laboratory imnstruments and telescopes. A large number of parallel,

typica | Iy accom p| ished by using a closely spaced shits constitutes a diffraction grating. The condition for masimum

diffraction eratin intensity 1s the same as that for the double shit or multiple slits, but with a large
g g number of slits the intensity maximum 1s very sharp and narrow, providing the high

resolution for spectroscopic applications. The peak intensities are also much
higher for the grating than for the double shit.
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DIFFRACTION GRATINGS

Incldsm

plane
wave

d siné,, = mA\. Typically, d = 1/3600-1/600 mm

It is_straightforward to show that if a plane wave is incident at an angle 8;, the grating equation becomes
d (sin ,, + sinf;) = mA. | Rule for the diffraction grating

3
"
N

Grating | —— (T = 2
o | — M =1
m=1"" — The light that corresponds to direct transmission (or specular reflection in the case of a reflection grating) is called
. - the zero order, and is denoted m = 0. The other maxima occur at angles which are represented by non-zero integers
Mm=0 0 m. MNote that m can be positive or negative, resulting in diffracted orders on both sides of the zero order beam.
— T\ =
Reflectivity depends on angle and wavelength!
m=1 T — T = 1
=0 T —my M = 1
= T —) M = 2 . . . . . .
Euel mbxure "2 By ending the optical cavity with a diffraction
of red and blue ——ﬂ m=2

grating mounted on a rotatable stage, a selection

The vundilivn fur readroure inlensily is e sdaoe gy Ll :
il..e. for a double slit. Howewver, angular separation of the Of the freq uency su pported by the CaVIty can be

maxima is generally much greater because the slit spacing donein a genera”y wide ra nge
is so small for a diffraction grating.

+
Tg 4sinB=mA

When the grating is rotated so that the (unwanted) wavelength is not reflected back
Losses are artificially (intentionally) introduced at such wavelengths
The threshold for laser operation is like raised up and viceversa

Tunability is achieved
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FREQUENCY STABILIZATION
Tunable lasers can then be stabilized, if needed, to emit at a predefined frequency

Stabilization strategy: electronic feedback (PID) on a reference > change of cavity length

- The optical frequency of a single-frequency laser, or the frequency of
one line of the frequency comb from a mode-locked laser, can be
stabilized via resonator length control. The feedback signal can be -- y Frequeulg)"_
obtained e.g. by recording a beat note with a second laser, by measuring Fasummg Jevice
the transmission or reflection of a very stable reference cavity, or by
measuring the transmission of some absorption cell {(e.g. an iodine cell),
possibly using Doppler-free spectroscopy. A frequently used technique
for generating an error signal is the Pound-Drever-Hall method [2, 3],
using a weak phase modulation of the light which is sent to a reference
cavity. A scheme not requiring such modulation is the Hansch-Couillaud
method [1].

Reference cell (absorbs at a predefined
frequency, it’s a known quantum system!)

Error signal

N\Snnn _ *The ratio of AM to FM versus the laser
S frequency results 1n this derivative signal

g N LT *This signal 1s at zero when the laser 1s on
f\f\ resonance

Refined stabilization strategies, such as Pound- e
ope ° ; 1 -

Drever-Hall, enables stability up to 1010 - 10-12 < i e B

and “newidth < 1HZ (On t%%ﬁdrg(ﬁ.%é_ http://WWV\:.uu.unupn.u, TUOU UITUU 1 U Le U veroivnie T 26




EXAMPLES OF LASER CAVITIES

4p - levels

2
2y 2
2pg, Dae Pir

a ) 20512

M1
Laser tube og
,.__! L 20
E

T=4%

457.9 nm

4s 2Py,

b) c)
Fig.5.28. Line selection in an argon laser with a Brewster-prism (a) or a Littrow-
prism reflector (b). Term diagram of laser transition in Ar+* (¢)
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mirrar

Nd:YAG solid-state laser

Partially
N reflective
Flashlamp (pump source) mirror

a Diode Mournt Lers Mount Geating Mourt
{ 0'
B ey
Pwzo
~ o Screw
e R
.T.‘.:-
iy 3
Gr.;bng <
30in

lon
Implant ———

Laser a.a. 2012/13 — http://www.df.unipi.it/~fuso/dida - Parte 6 — Versione 4

Optical —
Cavites

Output
f L Electrical
- =y Conlacts

Selectvely
Oxidized
Regions

Electrical
Contact

27




THE ROLE OF TRANSVERSAL MODES

So far, we have only considered the longitudinal behavior of the optical cavity, which is
responsible for frequency selection

.. but the effects on the transversal direction are relevant as well!

First of all, diffraction from the end-cavity elements (mirrors) will introduce additional losses
--> The problem cannot be considered unidimensional any more!

ol |||

T = M R
/I\Qfl/Zﬂ T : ¥ \
% & \
20 1X0262 A /a - — - Z N
j 7 —d— i
AV, 4 A
N% resonator —d—ste—d = (n-2)-L jed =~
L d>aZ/A
tlig;rsc:;tnon equivalent system of equidistant apertures

(V=T 12

Fig.5.5. Equivalence of diffraction at an aperture (a) and at a mirror of equal size (b). Fig.5.7. The diffraction of an incident plane wave at successive apertures s

The diffraction pattern of the transmitted light in (a) equals that of the reflected light d is equivalent to the diffraction by successive reflections in a plane-mirrc
in (b). The case §;d = a — N = 0.5 is shown with mirror separation d

Each time a reflection occurs at the end cavity mirrors diffraction takes place
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DIFFRACTION |

Let’s recall the Young’s (double slit) experiment:  Two (small) apertures, i.e., slits, mutually separated
by a distance d are placed at distance D from a
screen and illuminated by light

Due to “Huygens principle”, the slits
behave like two distinct and coherent
pointlike emitters

Once on the screen, the radiation
stemming from the slits will interfere

I)'

Distance in optical paths: r, -r =dsin6

Dephasing: 0= %dsinﬂ

Resulting intensity measured on the screen:

16)=41 cosz(%dsinﬂ)

I Interference
fringe spacing:

AD
xm+l -xm =,
d
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DIFFRACTION II

Let’s now assume a number N of (small) slits: | /

It can be shown (with bloody maths) that the intensity on A R

the screen depends on the angle 8 through: o _— )
Q- o
-2 ‘ ,,---’//7
sin” (N Vs,
19) o 2 7) “
sin”(y) ; it
M . .?(' v _
y=—smé
A
" ‘ I ! [ ! T uet0, t=th tavits - [ f == cr.-':‘m—bh
| ™ I Increasing N, | I
"] ‘ Ad ‘ = decreasing d \ L
| S mf A
| | | r o | | “
¥ | ] |
> '." _ | “‘ ados l Mo caeeen N W e i o S oWaan . et ,‘fnu - e
| | sin@ | sinB

Maxima are separated by A/d
Ripples are separated by A/(Nd) and tend to disappear for large N
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DIFFRACTION il

A single (small) slit can be thought as a very dense (d --> 0, N --> =) system of slits

It can be shown that the intensity on the screen 1

depends on the angle 6 through: 29 Che
. 2 03
sin” (/) o}
1(0) c ——— S ush a=A/10
ma . § o
[ =—smé oy
ﬂ 02t A/a
ot 74—57
| sin®
Slit size a ]
‘ senfl = :&
] send= 2 “Diffusion cone”:
BN B - | — sinf= Ma
} D o senfl = )—‘<
send= 22 (and ripples, typically not too intense)
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“RE-FOCUSING” MIRRORS

5.2.2 Spatial Field Distributions in Open Resonators

In Sect.2.1 we have seen that any stationary field configuration in a closed
cavity (called a mode) can be composed of plane waves. Because of diffrac-
tion, plane waves cannot give stationary fields in open resonators, since the
diffraction losses depend on the coordinates (x,y) and increase from the
axis of the resonator towards its edges. This implies that the distribution
A(x,y), which is independent of x and y for a plane wave, will be altered
with each round trip for a wave travelling back and forth between the mir-
rors of an open resonator until it approaches a stationary distribution. Such
a stationary field configuration, called a mode of the open resonator, is
reached when A(x,y) no longer changes its form, although, of course, the
losses result in a decrease of the total amplitude, if they are not compen-
sated by the gain of the active medium.

The mode configurations of open resonators can be obtained by an
iterative procedure using the Kirchhoff-Fresnel diffraction theory [5.16).
The resonator with two plane, square mirrors is replaced by the equivalent
arrangement of apertures with size (2a)? and a distance d between succes-~
sive apertures (Fig.5.7). When an incident plane wave is travelling into the z
direction its amplitude distribution is successively altered by diffraction,
from a constant amplitude to the final stationary distribution A, (x,y). The
spatial distribution A, (Xx,y) in the plane of the nth aperture is determined
by the distribution Ap_1(X,y) across the previous aperture.

Confocal resonator

Z=d/4

I
i
!
[}
|}
1
1
1
1

o —

From Kirchhoff’s diffraction theory we obtain (Fig.5.8)
i L dy’ 5.26)
! ' y) —eik o) dx’dy’ . (
Ay(uY) == 55 [J AL (KY) P ?(1 + cosf) dx’dy

A stationary field distribution is reached if

CB(xy) =CA,1(x,y) with C=vT-7pe? . > (5.27)

T i i n epend on x and y. The quan-
tity yp represents the diffraction losses and ¢ the corresponding phase shift,

d by diffraction. o '
causelnse}r/ting (5.27) into (5.26) gives the following integral equation for the

stationary field configuration

i - vy Lerike(1 4 cosf)dx’dy’ .  (5.28)
A(x,y) = - ;7(1 - vp)%e ‘4’J'IA(x,y)pe (

Because the arrangement of successive apertures is equivalent to the plane-
mirror resonator, the solutions of this integral equation also represent the
stationary modes of the open resonator. The diffraction-dependent phase
shifts ¢ for the modes are determined by the condition of resonance, which
requires that the mirror separation d equals an integer multiple of /2.

The general integral equation (5.28) cannot be solved analytically and
one has to look for approximate methods. For two identical plane mirrors of
quadratic shape (2a)2, (5.28) can numerically be solved by splitting it into
two one-dimensional equations, one for each coordinate x and vy, if the
Fresnel number N = a2 /(d)) is small compared with (d/a)2, which means if
a << (d®X)%/4, Such numerical iterations for the "infinite strip" resonator
have been performed by Fox and Li [5.18]. They showe i
field configurations do exist, and computed the field distributions of these
modes, their phase shifts and their diffraction losses.

[

r + - Z
-d/2 (] vdr2 z

The effects of diffraction in terms of losses can
be minimized by using “re-focusing” mirrors

Fig.5.10. Phase fronts and intensity profiles of the fundamental TEMy, mode at sev-
eral locations z in a confocal resonator
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TRANSVERSE MODES OF THE FIELD

TEM,,

TEM,4

TEMy, TEM,,

¥ Z
0 2 6/2

5.2.3 Confocal Resonators

The analysis has been extended by Boyd, Gordon, and Kogelnik to resona-
tors with confocally-spaced, spherical mirrors [5.19,20} and later by others
to general laser resonators [5.21-29]. For the confocal case (mirror separa-
tion d is equal to the radius of curvature R), the integral equation (5.28)

a)

A (x) A (x)

TEMgo

A
TEM;qo /‘Qﬂm
p 0

X

b)

} ' T
NN T TY 1T
¢ Fidit

TEMy,

i
TEMgg TEM,p TEMzg TEMog

TEMy, .

PEED ] e

i

. P
Pt

[
coordinates: x, y

Fig.5.9. (a) Stationary one-dimensional amplitude distributions A (x) in a confocal
resonator. (b) Two-dimensional presentation of linearly polarized resonator modes for

bitid :
TEMy, TEM,, TEM,, TEMyq TEM,, TEM,,

coordinates: r, & kﬁ

~

square and circular apertures

can be solved with the acceptable approximatiohich implies p =~
d in the denominator and cosé =~ 1. In the phase teraexp(-ikp), the distance
p cannot be replaced by d, since the phase is sensitive already to small
changes in the exponent. One can, however, expand p into a power series of
xx’/d? and yy’/d2. For the confocal case (d = R) one obtains [5.7, 19]

p =d[l - (xx"+yy")/R?] . (5.29)
Inserting (5.29) into (5.28) allows the two-dimensional equation to be se-
parated into two one-dimensional homogeneous Fredholm equations which
can be solved analytically [5.19,23].

From the solutions, the stationary amplitude distribution in the plane z
= z, vertical to the resonator axis is obtained an

he ocal resonator it
can be represented by the product of @ermitian polynomials? a Gaussian

function, and a phase factor:
Amn(%,Y,2) = C"Hp, (x")H, (y") exp(-r2 /w2) exp[-id(z,r,R)] .

(5.30)

Here, C” is a normalization factor. The function H,, is the Hermitian poly-
nomial of mth order. The last factor gives the phase ¢(zg,r) in the plane z =
g at a distance r = (x2+y2)1/2 from the resonator axis. The arguments x*
and y* depend on the mirror separation d and are related to the coordinates
X, ¥, zby x" = V2x/wand y* = vV3y/w, where

wi(z) = %{; + (22/d)?] (5.31)

is a measure for the radial amplitude distribution.

From the definition of the Hermitian polynomials [5.30], one can see
that the indices m and n give the number of nodes for the amplitude
A(x,y) in the x (or the y) direction. Figures 5.9,10 illustrate some of these
"Transverse Electro-Magnetic standing waves" which are called TEMm,n
modes. The diffraction effects do not essentially influence the transverse
character of the waves. While Fig.5.9a shows the one-dimensional ampli-
tude distribution A(x) for some modes, Fig.5.9b depicts the two-dimen-
sional field amplitude A(x,y) in Cartesian coordinates and A(r,f) in polar
coordinates. Modes with m = n = 0 are called Sfundamental modes or axial
modes (often zero-order transverse modes as well), while configurations
with m > 0 or n > 0 are transverse modes of higher order. The intensity dis-
tribution of the fundamental mode Iop ¢ AgyAggcan be derived from
(530). With Hy(x") = Ho(y") = | we obtain

Too(x,y,2) = [ye2 /w? (5.32)
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CONFOCAL RESONATORS |

The most convenient configuration is the

confocal resonator where the intermirror

distance is equal to the radius of curvature

—> each mirror focuses on the position of the
other one

- a Gaussian transverse distribution is
supported by the cavity

The TEM,, mode (Gaussian distribution
of the intensity along the transverse
direction) is the one showing less
losses, hence is “automatically” selected
(preferred) by the resonator

Equation (5.49) reveals that the frequency spectrum of the confocal resona-
Note: it can be tor is degenerated because the transverse modes with q = q; and m+n = 2p

have the same frequency as the axial mode with m = n = 0 and q = g, +p.
demonstrated that the free Between two axial modes there is always another transverse mode with

spectral range of a confocal {m+n+1) = odd. The free spectral range of a confocal resonator is therefore
cavity is one half that of a

' > v =c/4d.  Free spectral range (5.51)
plane parallel cavity confocal p g

confocal cavity
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CONFOCAL RESONATORS II

The fundamental modes have a Gaussian profile. For r = w the intensity
decreases to 1/e? of its maximum value I, = C*2 on the axis (r = 0). The 100.0 ——r—=
value r = w is called the beam radius or mode radius. The smallest beam

radius wqp within the confocal resonator is the beam waist, which is located
at the center z = 0. From (5.31) we obtain with d = R

Waist (5.33)

At the mirrors (z = d/2) the beam radius w(d/2) = V2w i i
factor v2. (d/2) o is increased by a

100

losses [%)]
P
T
38
a2
o
28
2 y .,

Examples 5.4

a) For a HeNe laser with A =633 nm, R =d = 30 5.33) gi = =
mm for the beam waist. om ( ) gives wo = 0.17 o1
b) ForaCOz]aserwithA=lO,um,R=d=2misw0=1.8mm. /
i 1 i 13 1 1 1 A . i 1 1 i L 1
0 0.2 0.4 06 |08 1.0 1.2 1.4
. . . .. —|al
Typically, the active medium is in the Fresnel number N =a®/d-2
. Fig.5.1). Diffraction losses of some modes in a confocal and in a plane-mirror reso-
waist Of the Confocal resonator and nator, plotted/as a function of the Fresnel number N

little active medium volume is used

& large Fresnel number (well above 1) of a resonator {cavity) means that diffraction losses at the end
mirrors are small for typical mode sizes (i.e. not near a stability limit of the resonatpr, where mode sizes
can diverge). This is the usual situation in a stable laser resonator. Conversely, a/small Fresnel number
means that diffraction losses can be significant - particularly for higher-order modeg, so that diffraction-
limited operation may be favored.

High Fresnel number—> large diffraction losses

The Gaussian mode, TEM,,,, enables minimum losses in a confocal resonator
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5.2.6 Stable and Unstable Resonators

In a stable resonator the field amplitude A(x,y) reproduces itself after each
round trip apart from a constant factor C which represents the total dif-
fraction losses but does not depend on x or y, see (5.27).

The question is now how the field distribution A(x,y) and the diffrac-
tion losses change with varying mirror radii Ry, R, and mirror separation d
for a general resonator. We will investigate this problem for the fundamen-
tal TEMgy, mode, described by the Gaussian-beam intensity profile. For a
stationary field distribution, where the Gaussian beam profile reproduces
itself after each round trip one obtains, for a resonator consisting of two
spherical mirrors with the radii R;, R,, separated by the distance d, the
spot sizes 7w, 2 and 7w, 2 on the mirror surfaces [5.1,23]

1/2 1/2
B2 ] © mw,? = Ad [—g—l—] (542

w2 = Ad [————
1 g (1 - 8182) go(1 - 8182)

with the parameters (i = 1,2)
g =1-d/R;. (5.43)

This reveals that for g, = 0 or g, = 0 and for g, g, = | the spot sizes become
infinite at one or at both mirror surfaces, which implies that the Gaussian
beam diverges: The resonator becomes unstable. An exception is the confo-
cal resonator with g, = g, = 0, which is stable if both parameters g; are ex-
actly zero. For g;g, > 1 or g;8, < 0 the right-hand sides of (5.42) become
imaginary, which means that the resonator is unstable. The condition for a
stable resonator is therefore

Stable resonators are those limiting the losses for
diffraction effects

Unstable resonators are however used when a large
volume of active medium must be used
— High power lasers (and poor optical quality!)

STABILITY OF THE RESONATOR

Table 5.1. Some commonly used optical resonators with their stability parameters g =
1 - d/R;

Type of resonator Mirror radii Stability parameter

Confocal Ry +Ry=2d g +8g, =2gg,
Concentric R; +Ry=d 88 =1
Symmetric R, =R, 8 =By =8
Symmetric confocal R; =R, =d 81 =8, =0

Symmetric concentric R, =R,=4d g =g,=-1

Semiconfocal R, =00 gi=1,8 =1
Plane Ri=Ry=00 g =g,=+1
0<gigz<l or g =g,=0. (5.44)

—

hemi(s&hle)rical

=

|-

planeparallel

(1,1)

unstable

l concentric l
(-1,-1)

concave convex
(2,1/3)
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QUALITY AND ROUNDTRIPS

Plane parallel mirror cavity Stable cavity

After one roundtrip

Roundtrip time t= L, ,/c
: In the vacuum
T[ns] =3 L [m]

After 30 roundtrips

Temporal evolution of the e.m. intensity distribution in the cavity

Each roundtrip within the cavity enhances the “optical quality” if diffraction
losses are prevented
(hard to get many roundtrips in pulsed lasers...)
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RESONATOR DESIGN AND LASER BEAM PROPERTIES

a) plane resonator

o]

R1=R2=eo, G1=g=1

b) confocal resonator

==

Ri=Ry=d, gi=g,=0

¢) concentric resonator d) semiconfocal resonator
R =R, le—— R——o

g1=05
ZZ3> gp=1
R«‘ =2d
b Rz =

R1=+ R2=d, 91-9231

e) general spherical resonator mit TEM,,-Mode

"”%:i/' Tas
? ZIE]
LN . ; AR
| [ w7 TR

lnl

F-—a"—:-!
th‘—l

Fig.5.13. Some svamnlac af macaocacte. oo 3

a) 14

b)

{ar field
distribution 05};

0 200 400 O [urad]

-400 200

Fig.5.16a,b. Diffraction pattern of the output intensity of a Iz}ser \\(ith_ an _unstable
resonator. (a) Near field just at the output coupler and (b) far-f ze{d dnstrfbutlor? for a
resonator with a = 0.66 cm, g, = 1.21, g, = 0.85. The pattern obtained with a circular

Tt - —e—pavevsa sax AR,

For some laser media, in particular those with large gain, unstable re-
sonators with g, g, < 0 may be more advantageous than stable ones for the
following reason: In stable resonators the beam waist wq(z) of the funda-
mental mode is given by the mirror radii R;, Ry and the mirror separation
d, see (5.33), and is generally small (Example 5.4). If the cross section of
the active volume is larger than w2, only a fraction of all inverted atoms
can contribute to the laser emission into the TEMy, mode, while in unstable
resonators the beam fills the whole active medium. This allows extraction of
the maximum output power. One has, however, to pay for this advantage
by a large beam divergence.

Let us consider the simple example of a symmetric unstable resonator
depicted in Fig.5.14 and formed by two mirrors with radii R; separated by
the distance d. Assume that a spherical wave with its center at F 1 Is emerg-
ing from mirror M,. The spherical wave geometrically reflected by M, has
its center in F,. If this wave, after ideal reflection at M,, is again a spheri-
cal wave with its center at F 1> the field configuration is stationary and the
mirrors image the local point F 1 into F,, and vice versa. '

For the magnification of the beam diameter on the way from mirror
M, to M, we obtain from Fig.5.14 the relation

Ma= & —- (5.45)

e ¢ — ]
a) b)

Fig.5.14. (a) Spherical waves in a symmetric unstable resonator, emerging from the
virtual focal points F; and F,. (b) Asymmetric unstable resonator with a real focal
point between the two mirrors

The optical quality of the produced laser
beam depends on the cavity design

output mirror (solid curve) is compared with that of a circular aperture (dashed cu'r'v?z B Jnipi.it/”fuso/dida - Parte 6 — Versione 4 38
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CHARACTERIZING THE BEAM PROPERTIES |

Beam Parameter Product (BPP)
Acronym: BPP

Definition: product of the beam radius in a focus and
the far-field beam divergence

The beam parameter product (BPP) of a laser
beam is defined as the product of beam radius
(measured at the beam waist) and the beam
divergence half-angle (measured in the far
field). The usual units are mmmrad (millimeters
times milliradians). The BPP s often used to
specify the beam quality of a laser beam: the
higher the beam parameter product, the lower
is the beam quality.

The BPP can also be defined for non-Gaussian
beams. In that case, second moments should
be used for the definitions of beam radius and
divergence. The smallest possible beam
parameter product is then achieved with a
diffraction-limited Gaussian beam; it is A/ 1. For
example, the minimum beam parameter product
of 3 1064-nm beam is = 0.339 mm mrad.

BPP measures the product of
beam size and divergence

Typical values:

For non-circular beams, the BPP can be
different e.g. in the vertical and horizontal
direction.

Note that the BPP remains unchanged when the
beam is sent through some non-aberrative
optics, such as a thin lens. If that lens
generates a focus with smaller beam waist
radius, the beam divergence will increase
correspondingly. For measuring the BPP, it is
thus allowed to form a focus of convenient size,
dependent on the equipment used (e.g. a beam
profiler) and the available space (which has to
extent over several Rayleigh lengths).

Non-ideal optics can “spoil” the beam quality
and thus increase the BPP. In some special
cases, slight aberrations of an optical element
(such as a spherical lens) can somewhat reduce
the BPP of 3 laser beam, if the beam has
distortions which can be compensated with that
element.

http://www.rp-photonics.com/beam_parameter_product.html

HeNe 0.5 mm mrad

CO2 5 mm mrad

Nd:YAG 10 mm mrad
Diode laser 20-100 mm mrad
Excimer laser 500 mm mrad
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CHARACTERIZING THE BEAM PROPERTIES Il

M2 FACTOR

Definition: a parameter for quantifying the beam quality
of laser beams

The M2 factor, also called beam quality factor
or beam propagation factor, is a common
measure of the beam quality of a laser beam.
According to ISO Standard 11146 [4], it is
defined as the beam parameter product divided
by A/, the latter being the beam parameter
product for a diffraction-limited Gaussian beam
with the same wavelength. In other words, the
half-angle beam divergence is

=M
Wq

where Wy is the beam radius at the beam waist
and A the wavelength. A laser beam is often
said to be "M? times diffraction-limited”. A
diffraction-limited beam has an M2 factor of 1,
and is a Gaussian beam. Smaller values of M?
are physically not possible. A Hermite-Gaussian
beam, related to a TEM,,, resonator mode, has
an M2 factor of (2n+1) in the x direction, and
(2m + 1) in the y direction.

Figure 1: Beam parameter product and M2
values of various laser types. Due to the
longer wavelength, CO5 lasers have a
larger beam parameter product than
diffraction-limited 1-um solid-state lasers, o1

The M2 factor of a laser beam limits the degree
to which the beam can be focused for a given
beam divergence angle, which is often limited
by the numerical aperture of the focusing lens.
Together with the optical power, the beam
quality factor determines the brightness (more
precisely, the radiance) of a laser beam.

For not circularly symmetric beams, the M?
factor can be different for two directions
orthogonal to the beam axis and to each other.
This is particularly the case for the output of
diode bars, where the M2 factor is fairly low for
the fast axis and much higher for the slow axis.

1000

100

lam punf:ped
Nd:YAG lasers
10 diod d |
e-pum
NAYAG lasers

thin disk
Yb:YAG lasers

beam parameter product (mm mrad)

but still compare favorably with lamp- 1 10 100 1000

pumped systems.

M’ beam quality factor
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CONCLUSIONS

The optical cavity, or resonator, is a key component of any laser just as the
active medium is

The boundary conditions set the possible (sustained) longitudinal modes

The interplay between the frequency of the allowed modes and the gain
curve ultimately determines the laser frequency and linewidth

The transverse behavior is relevant as well to:

o control the diffraction losses
o rule the laser beam optical properties (divergence)

Many schemes have been realized in practical laser systems in order to
either improve the linewidth, the tunability, or the beam optical properties
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