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Outlook

e Basics of quantum mechanics
e The need for quantum description in small-sized systems

e A few examples of exercises and effects involving quantum physics:
- quantum box/quantum well,
- free particle and duality principle;
- step potential and tunneling;
- harmonic oscillator

e The quantum nature of the matter: quantized levels for the atom
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Quantum nails (or arrows)

http://en.wikiversity.org/wiki/Making_sense_of _quantum_mechanics/Principles_of Quantum_Mechanics

What are the first principles of Quantum Mechanics? jwaiy

Irmagine a bunch of ardinary nails thrown through the air. Each nail will have its
own welocity, saome will collide, some will cross space unaffected, most will Al we do 15 draw little arrows... Richard P. Feynman, 1935
gain spinning moation, each with its own angular velocity, with its own rotation
axes. This is just a guantum syster. Ina guantum systemn, the elements are

epresented by arrows mathematically we call thern wectars. A spinning nail has observational properties attached to it (position, translational
State vector,

and angular welocity,...), the same for the wector representing it. The concept wector + obaservational properties is called 3
the core of quantum physics.

Y his is

First principle: A quantum system may be represented by a vector [.ay g

N,
Quantum systems known as such are not exactly behaving like the pseudo-quantum system gt I." is
described abowe, but... there are close similarities. And these similarities give us precious | —
insights in the quantum laws. The first similarity between a "micrascopic” quantum system and ;""-E-
3 bunch of needles of rods, of arrows or of any linear objects, is the fact that it may be

represented by a state vector)This wector bears the obsernational properties of the system
(enefdy o, pooitior T, fmomenturm p...), which specify the state of the system. Quantum

physicists call it a ket, denoted by the marks | = delimiting some symbol(s) informing about
the state in which the system is, for example:

—a
rd

guaranies Bvery syotem of linear objects also corresponds a vector,

[f we keep in mind that state wectors represent ordinary linear objects, there is nothing

; : . Tofe: @ pench quartim sygem of ieedks. 5
mystenqus about qua_nturrj phj,fs!cs. WE.rT'IEI'_-,-' deﬁuce some trlw.al quantgm laws, the first of o T et e b
them being that the direction of linear objects varies when physical conditions change. vectns of kel

. < . . . . Dioewn; Bckition ik frwcon @ setotwcon kB
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Time evolution
Second principle: The orientation of the vector representing a quantum system evolves [.ai

Cluanturn evolution laws determine how the orientation of the state vector changes, given some modifications or perturbations of the physical
conditions. For example, the time evolution law states that the vector difference of the wectors representing a needle at two infinitesimal close
instants £ and £ +df is perpendicular to the vector at instant £ and proportional to the angular velocity w of the needle multiplied by the time
difference (see Figure Time evolution of & state vectol).

An elegant way to represent
changes of arientation of vectars
is through Argand's method:
multiplying by the complex factor Iy (At )=

e '-?*"l,u 1=

2 where 8 is the rotation angle

lalso called the phase or phase

angle). Perpendicularity between
twio equally normed vectars may
therefore be seen as equality

between one vector and the ather ly(o,t+dt)>=e " |y(w,t)>

wector multiplied by eln — - Time evolution of a state vector _ dly(ot)> =|W((0,t+dt)>—|lﬂ((0,t)> _ ol
The vectar equation pictured in dt dt

figure "Time evolution of a atate vector” therefore writes as: d( giodt _ 1)
L == v(et)>=-elylat)y> .. ;
- d|(w, 1)) i
i — = —w|t(w,t i
- [0 (w,1)) |

if the time axis is set in the negative z-direction. This formula is a general deterministic law characterizing the time evolution of systems of
linear objects, whether microscopic ar macroscopic. Faor a system of fundamental particles, it usually appears with a factor f at both sides
(and i at the left);

e
—
£
—
S
—

iR A )

The factor fj o multiplying the ket then represents the energy content of the system. This is Schridinger's time-dependent equation. So we

have a second close similanty between quantum systems and macroscopic linear objects: they both obhey Schradinger's equation.
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Observable quantities

Third principle: Kets are transformed into other kets by means of operations that reveal an observational
property [zdig

d
In the time dependent Schridinger equation, the operatar 3, — operates on the ket | '.:,f,r} giving the same ket multiplied by the factor fey. For
dt

elementary particles, this factor is the measure of the energy of the particle.

The general form of the equation where a ket (just an arrow) is transformed into another ket, shows as:

_________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________

where |t'f,r} and |X} may be any imaginable ket and *1 denotes the appropriate operator. In quantum physics, operators are dencoted by a
circumflex on the letter.

The operator E'h—. of the Schridinger equation is called the Hamiltonian operator Er Operating with the Hamiltonian on a ket extracts the

energy fram the ket.

. Reflecting wall
A famous, conventional J

application: \
the quantum box

Boundary condition: “reasonably”,
the arrow will be parallel to the reflecting wall when impinging on it
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Quantum box

one-dimensional box of length L. Let the arrow bounce back and forth with constant velocity v, between two parallel walls. The period between
two bounces is L/ v, The needle is plane rotating in the x-z plane with angular velocity w. ¥We will assume that the arrow acquires rapidly a
stationary state characterized by the fact that it is parallel to the wall at each instant of bouncing. Therefare, at equilibrium, the arrow must
rotate about an angfe TINTT between two bounces, with ninteger-valued. This condition is expressed as:

w=nim
The rotational statessfie arrow is quantized due to the boudary conditions. n may take any integer value between — 20 and 400

We may characterize the state of the arrow by the ket |t||_.-ﬂ(l..,l'..-‘n)} say a representation of the needle with angular velocity wy, at the instant of

bouncing at the left wall (taken as t=0). YWe also set x=0 at that wall. At a later timestamp, the state of the needle is represented by the initial
ket, multiplied by its phase factor:

| b(t,wn)) = exp(—iwnt)[tho(wn))
Once the in initial ket given, we may as well characterize the state of the needle by the complex scalar function expd - fof). This function is
called the wave-function of the needle and is generally denaoted by the ket without the brackets: yif,w. We may write:

[0(t,wa)) = ©(t, wn) [Po(wn)).

or mare concisely:
|} = 4 . |t}

halding in mind that we are dealing with functions of time.

Quantization (quantized energy, momentum, etc.)
arises from boundary conditions
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Standing waves in the box

We could however see it otherwise, forgetting the time parameter and concentrating on
the xcoordinate of the needle. For this stationary state, the phase of the arrow is also -“K\ )rf'f \\ < ™ B
a function of the »coaordinate. YWe may therefaore as well write the preceding equation / \“Q_[_-f_,-f'ff Y

as: . —
. . 7 /o™ o\
() = exp(—ikz) o) |22 2
with k& the wave-number nxl and | tlf,r,,:,} the ket at »=0. Or concentrating only on the

e P
direction of the needle, we could write: { /{"“:_k ‘_T_’ ,_f/*:_.f'f})\ T

[¥(¢)) = exp(—id)|vo) T~ N\,
These equations are equivalent for this particular stationary state in a 1-dimensional T_‘ [ ST "-&115;5:3._.'!_1 J
box. WWe could write themn in different ways, even involving other physical properties :
such as the direction of the rotation axis, the energy, the momentum, the potential or Superposition of possible states of the rotating arrow in 2 &

any imaginable physical praperty of the system. They illustrate that, given an initial b depending on the x-coordinate

ket, the real izsue of quantum mechanics is the complex (wave-function that operates
on the ket. That function contains all that can be known about the physics of the system. It tells us how a ket is transformed into another ket, it
tells us which physical observables can be extracted from it and how they are related.

When we look at the figure of that arrow that bounces back and forth ina box, we may grasp it as a whole, visualizing the motion classically,
knowing how to describe the configuration deterministically. Howewer, at the quantum level, observations are discrete. For example, when we
observe the position of the arrow guanturm-rmechanically, we in fact only notice the location of the interaction of that arrow with another gquantum
particle (arrow). That location is a point, while the arrow is extended. So we have an intrinsic indeterminacy in the measurement of the position.
The same far the direction of the arrow. Because measurements at the quantum level are discrete, it is impossible to determine the phase of
the arrow through a single observation. There is an intrinsic indeterminacy of an angle 2x in the phase ¢ of the quanturn particle. This leads us
to our fourth gquantum principle, the Heisenberg indeterminacy principle.

The state of a quantum system (the vector) can be
naturally associated to a wave
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Principles of M

O

Nel quantum box effetti quantistici diventano rilevanti (e predominanti) per
v/L grande, cioe alta velocita e/o piccole dimensioni

Punto di partenza della MQ:

Complementarita (o dualismo) onda corpuscolo

(e.g., onda e.m. e rappresentabile con fotone e, viceversa, particella materiale
deve poter essere rappresentata come onda)

Strumento fondamentale della MQ_:
Funzione d’onda W(r,t) per descrivere una particella quantistica (e.g., elettrone, fotone, etc.)
—> approccio probabilistico: | (r,t)|? & la probabilita di trovare particella in r, r+dr
- decade il concetto di traiettoria

Infatti il principio di indeterminazione stabilisce, e.g., per un moto unidimensionale:
AXAp 2> 77/2

o non & pozsibile conozcere simuttaneamente posizione e gquantita di maoto di
un dato oggetto con precisione arbitraria »
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Classical vs quantum

Problema fondamentale della meccanica classica (del punto):
- Determinare r(t) e v(t) (Ia traiettoria) a partire dalle forze F
- Strumento principe: equazione del moto a = F/m

Problema fondamentale della meccanica quantistica:
-Determinare ¥,t) e interpretarla probabilisticamente
-Strumento principe: equazione di Schroedinger (casi non relativistici!):

2 —
eV (F L) = iR or(r,Y
2m ot

0* 0° 0*

con  VAY(F,t)= ((9 —+ Y = —)¥(F,t) (in coordinate cartesiane)
X

V(r,t) potenziale che controlla la dinamica del corpo), generciamente dipendente da r,t

Equaziong di Szchroedinger nel caso unidimensionale:
_h_a_ql(x’t) +V(x,t) =1#h o¥(x1) Derivate parziali!
2m ox° ot
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Formal requirements leading to Schroedinger

L. It must be consistent with the de Broglie-Finstein postulates, (5-8)

A=h/p and v=E/h
2. It must be consistent with the equation
E=p2m+V (5-9)

relating the total energy E of a particle of mass m to its kinetic energy p?/2m and
its potential energy V.

3. It must be linear in W(x,t). That is, if ¥,(x,#) and W.(x,) are two different
solutions to the equation for a given potential energy ¥ (we shall see that partial
differential equations have many solutions), then any arbitrary linear combination of
these solutions, W(x,t) = ¢, ¥, (x,t) + ¢, ¥,(x,1), is also a solution. This combination is
said to be linear since it involves the first (linear) power of W,(x,f) and ¥,(x,); it is
said to be arbitrary since the constants ¢, and ¢, can have any (arbitrary) values.
This linearity requirement ensures that we shall be able to add rogether wave Sfunctions
to produce the constructive and destructive interferences that are so characteristic of
waves. Interference phenomena are commonplace for electromagnetic waves; all the
diffraction patterns of physical optics are understood in terms of the addition of
electromagnetic waves. But the Davisson-Germer experiment, and others, show that
diffraction patterns are also found in the motion of electrons, and other particles.
Therefore, their wave functions also exhibit interferences, and so they should be
capable of being added.

4. The potential energy V is generally a function of x, and possibly even t. How-
ever, there is an important special case where

Vixp) =V, (5-10)

This is just the case of the free particle since the force acting on the particle is
given by

F = —aV(x,)/ox

which yields F =0 if V;, is a constant. In this case Newton’s law of motion tells us
that the linear momentum p of the particle will be constant, and we also know that
its total encrgy E will be constant. We have here the situation of a free particle with
constant values of A = h/p and v = E/k, discussed in Chapter 3. We therefore assume
that, in this case, the desired differential equation will have sinusoidal traveling wave
solutions of constant wavelength and frequency, similar to the sinusoidal wave func-
tion, (5-1), considered in that chapter.

Using the de Broglie-Einstein relations of assumption 1 to write the energy equa-
tion of assumption 2 in terms of 4 and v, we obtain

B2/2mA? + V(x,t) = hv
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Semplici ragionamenti generali conducono alla
formulazione dell’equazione

In order to satisfy the linearity assumption 3, it is necessary that every term in the
differential equation be linear in W(x,), i.c., be proportional to the first power of
W(x,t). Note that any derivative of W(x,z) has this property. For instance, if we con-
sider the change in the magnitude of 8*¥(x,)/dx? that results if we change the mag-
nitude of W(x,t), say by a factor of ¢, we see that the derivative increases by the same
factor and thus is proportional to the first power of the function. This is true since

P[c¥(x)] . ST (x,t)
o ox?

where ¢ is any constant. In order that the differential equation itself be linear in
W(x,t), it cannot contain any term which is independent of ¥(x,t), i.e., which is pro-
portional to [W(x,t)]° or which is proportional to [¥(x,f)]? or any higher power.
After obtaining the equation, we shall demonstrate explicitly that it is linear in ¥(x,t),
and in the process the validity of these statements will become apparent.

Now let us use the assumption 4, which concerns the form of the free particle
solution. As suggested by that assumption, we shall first try to write an equation
containing the sinusoidal wave function, (5-1), and/or derivatives of that wave func-
tion. We have already evaluated some of the derivatives in Examples 5-1. Inspecting
these, we see that the effect of taking the second space derivative is to introduce a
factor of —k?, and the effect of taking the first time derivative is to introduce a factor
of —w. Since the differential equation we seck must be consistent with (5-12), which
contains a factor of k* in one term and a factor of ® in another, these facts suggest
that the differential equation should contain a second space derivative of W(x,t) and
a first time derivative of ¥(x,t). But there must also be a term containing a factor of
Vi(x.t) because it is present in (5-12). In order to ensure linearity, this term must con-
tain a factor of ¥(x,t). Putting all these ideas together, we try the following form for
the differential equation

?P(x,0) W(x,1)
dx? dat
The constants « and # have values which remain to be determined. They are used to

provide flexibility which, we might guess, will be needed in fitting (5-13) to the various
requirements it must satisfy.

o + V(x)¥P(xt=f

(5-13)
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Eigenfunctions and eigenvalues

Soluzione dell’'eq. di Schroedinger e in genere complicata (derivate parziali')
Fortunatamente esistono casi in cui I'equazione € piu semplice
Se V' non dipende dal tempo, cioe e V(x), allora: .

Y (x,1) =y (X)e(t)

2

hZ
2m dx* v

(x) +V (x) = Ey(x)

pt)=¢e 7

con

e

La f.ne d’onda degli stati
stazionari € fattorizzabile

¥(x) : autofunzione o autostato
E : autovalore dell’energia

56 REQUIRED PROPERTIES OF EIGENFUNCTIONS

In the following section we shall consider, in a very general way, the problem of
finding solutions to the time-independent Schroedinger equation. These consider-
ations will show that energy quantization appears quite naturally in the Schroedinger
theory. We shall see that this extremely significant property results from the fact that
acceptable solutions to the time-independent Schroedinger equation can be found
only for certain values of the total energy E.

To be an acceptable solution, an eigenfunction y(x) and its derivative dy(x)/dx are
required to have the following properties:

¥(x) must be finite.
¥(x) must be single valued.
W(x) must be continuous.

di(x)/dx must be finite.
dyr(x)/dx must be single valued.
di(x)/dx must be continuous.
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Formal derivation of Schroedinger for eigenvalues

e ASe A m———r g T —

Substituting the assumed form of the solution, ¥(x,t) = ¥(x)@(?), into the Schroe-
dinger equation, and also restricting ourselves to time-independent potential energies
that can be written as V(x), we obtain

B PY(e() W )e(t)
ot

+ VW (x)elt) = if

T 2m ox?
Now -
02 ik d?
L I

the notation d%{x)/0x? being redundant with d2y(x)/dx? since (x) is a function of x
alone. Similarly

oy (x)e(t) do(t) do(t)
To YW =Yg
Therefore, we have
hz dz
~ 3 PO Vot = i 220
Dividing both sides of this equation by ¢(x)e(r), we obtain

L L _ L de(
Vf(x)[ 2m  dx? +V(x)'lf(x)}_; i

Note that the right side of (5-36) does not depend on x, while the left side does not
depend on t. Consequently, their common value cannot depend on either x or ¢. In
other words, the common value must be a constant, which we shall call G. The result
of this consideration is that (5-36) leads to two separate equations. One equation is
obtained by setting the left side equal to the common value

L [_#dyy —-G
5| "3 V) | =
The other equation is obtained by setting the right side equal to the common value
1 del(t)

o) dt (5-38)

(5-36)

(5-37)

T_he constant G is called the separation constant, for the same reason that this tech-
nique for solving partial differential equations is called the separation of variables.
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This differential equation telis us that the function @(¢), which is its solution, has the
property that its first derivative is proportional to the function itself. Anyone with
much experience in differentiating would not have difficulty in guessing that ¢(t) must
be an exponential function. Therefore, let us assume that the solution fo the differ-
ential equation is of the form A

oty =&
where « is a constant that will be determined shortly. We verify this assumed solution
by differentiating it, to obtain

(5-39)

do(t) .
T ae™ = ap(t)

which we then substitute into (5-39). This yields

() = — 5 00

If we set
iG
=T
the assumed solution obviously satisfies the equation. Therefore
Q(t) = e~ G (5-40)

is a solution to {5-38) or (5-39).

We see that @(¢) is an oscillatory function of time of frequency v = G/h. But, according
to the de Broglie-Einstein postulates of (5-8), the frequency must also be given by
v = E/h, where E is the total energy of the particle associated with the wave function
corresponding to (). The reason is, of course, that ¢(f) is the function that specifies
the time dependence of the wave function. Comparing these expressions, we see that
the separation constant must be equal to the total energy of the particle. That 1s

G=E (5-42)
Using this value of G in the space equation, (5-37), that we obtained from the
separation of variables, we have

RO | i) = Evie)

pry (5-43)
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Example: free particle

Esempio: particella libera (cfr. fotone) che si muove lungo X V=0

avendo quantita di moto definita p *-

P ” X
P(x,1) oc ee™ =y (X)o(t)

v (x) =e™

Secondo de Broglie si ha:
con p = 7k

Lunghezza d’onda di de Broglie: A;z=27/k = h/p

Attenzione: la funzione d’onda di de Broglie ha |y|?=1
— la probabilita € sempre e ovunque unitaria
= [ |y|? dx (fattore di normalizzazione) diverge!

D’altra parte, per principio di indeterminazione: Ap=0 2> Ax — oo

- (realisticamente occorre pacchetto d’onda, cfr. serie di Fourier)

Figure 5-2 A very schematic picture of a wave function and its assocfatgd pamclel. The
particle must be at some location where the wave function has an appreciable amplitude.
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Expectation values and observable quantities

Consider 4 particle and its associated wave function ¥(x,t). In a measurement ot
the position of the particle in the system described by the wave function, there would
be a finite probability of finding it at any x coordinate in the interval x to x 4+ dx,
as long as the wave function is nonzero in that interval. In general, the wave function
is nonzero over an extended range of the x axis. Thus we are generally not able to
state that the x coordinate of the particle has a certain definite value. However, it is
possible to specify some sort of average position of the particle in the following way.
Let us imagine making a measurement of the position of the particle at the instant
:. The probability of finding it between x and x + dx is, according to Born's postulate,
5-24)

P(x,t) dx = W*(x,0)'¥P(x,t) dx

Imagine performing this measurement a number of timcs on identical systems de-
scribed by the same wave function W(x,t), always at the same value of ¢, and recording
the observed values of x at which we find the particle. An example would be a set of
measurements of the x coordinates of particles in the lowest energy states of identical
simple harmonic oscillators. In three dimensions, an example would be a set of mea-
surements of the positions of electrons in hydrogen atoms, with all the atoms in their
lowest energy states. We can use the average of the observed values to characterize
the position at time ¢ of a particle associated with the wave function ¥ (x,2). This
average value we call the expectation value of the x coordinate of the particle at the
instant ¢. It is easy to see that the expectation value of x, which is written %, will be
given by

X = j XP(x.t)dx
-
Th_e reason is that the integrand in this expression is just the value of the x coordinate
welg_hted by the probability of observing that value. Therefore, we obtain upon inte-
grating the average of the observed values. Using Born's postulatc to evaluate the

probability density in terms of the wave function, we obtain
o

X j W, )W (1) dx (5-28)

The terms of the integrand are written in the order shown to preserve symmetry with
a notation which will be developed later.

Esempio: <x> = 0 per particella libera
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X = J P, e (x,1) dox

and

£

Jx)= J‘ WHx,£) F (%)W (1) dx
where f(x) is any function of x. Even for a function which may explicitly depend on
the time, such as a potential energy V(x,r), we may still write

]

Vix,t) = j. P*(x )V (e )P (x,) dx (5-29)

@
because all measurements made to evaluate F(x,r) are made at the same value of 7, and
so the preceding arguments would still hold.

Il valore “medio” di una grandezza
(misurabile) su un sistema quantistico e
definito come

< f >:jky*(r,t)qu(r,t)d3r =<V | |V >

La grandezza misurata dipende dalla
“sovrapposizione spaziale” delle funzioni
che compaiono nell'integrazione (di
volume)
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Example 2: step function

For the step potential, the x axis breaks up into two regions. In the region where
x < 0 (left of the step), we have V(x) = 0, so the eigenfunction that will tell us about
the behavior of the particle is a solution to the simple time-independent Schroedinger
equation
h? d*(x)
2m dx?

In the region where x > 0 (right of the step), we have ¥(x) = V,, and the eigenfunction

is a solution to a time-independent Schroedinger equation which is almost as simple
7% dip(x)

T m + Voifr{x) = Er(x) x>0 (6-13)

= E¥(x) x<0 (6-12)

The two equations are solved separately. Then an eigenfunction valid for the entire
range of x is constructed by joining the two solutions together at x = 0 in such a
way as to satisfy the requirements, of Section 5-6, that the eigenfunction and its first
derivative are everywhere finite, single valued, and continuous.

Consider the differential equation valid for the region in which ¥(x) = 0, (6-12},
Since this is precisely the time-independent Schroedinger equation for a free particle,
we take for its general solution the traveling wave cigenfunction of (6-8). We write
that eigenfunction as

Y(x) = Ae™* + Be~™*  where k, = ——'2:“5 x<Q (6-14)

Next consider the differential equation valid for the region in which V(x) = Vo,
(6-13). From the qualitative considerations of Section 5-7, we do not expect an oscil-
latory function, such as in (6-14), to be a solution since the total energy E is less than
the potential energy V; in the region of interest. In fact, those considerations tell us
that the solution will be a function which “gradually approaches the x axis.” The sim-

plest function with this property is the decreasing real exponential, which can be
written

Y(x) = g4 x>0 (6-15)
Let us find out if this is a solution and, if so, also find the required value of k,, by
substituting it into (6-13), which it is supposed to satisfy. We first evaluate

2
TV _ (ke = Kyt

dx?

Then the substitution yields

hz
= 3 BV0) + Vo) = Ey(x)

This satisfies the equation, and therefore verifies the solution, providing

L — v2m(V, — E)
=0T

E<V, (6-16

V(x)

V(x)=Vy

Vix)=0

Classicamente: per E<V, ho solo
riflessione sulla barriera

(esempio: un piano inclinato che deve
essere risalito da una particella)

Quantisticamente ho riflessione, ma
anche trasmissione!!
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m(V, — E
where k; = —\/——‘(; £
should also be a solution to the time-independent Schroedinger equation that we
are dealing with. It is equally easy to verify this, by substilution into the equation.
But let us instead verify that the arbitrary combination of the two particular solutions
2m(V, — E)

Fa

where k; = ———F——
fi

and where C and D are arbitrary constants, is a solution to (6-13). We calculate

Y(x) = et

x>0 (6-17)

Y(x) = Ce*** 4 De~h~ x>0 (6-18)

b — i
D — Cager 4 D(—ke = kgt = TR0 By
and substitute the result into the equation. We obtain

h? 2m .
~m 7 (Vo — EWr(x) 4+ Voy(x) = E¥(x)

m fi
Since this is obviously satisfied, we have verified that (6-18) is a solution. Since it
contains two arbitrary constants, it is the general solution to the time-independent
Schroedinger equation for the region of the step potential where V(x) = V;, with E <
Vo. Although the increasing exponential part will not actually be used in the present
section, it will be used in a subsequent section.

The arbitrary constants 4, B, C, and D of (6-14) and (6-18) must be so chosen that

the total eigenfunction satisfies the requirements concerning finiteness, single val-

uedness, and continuity, of Y(x) and diyr(x)/dx. Consider first the behavior of ¢(x) as’

x = + co. In this region of the x axis the general form of ¥(x) is given by (6-18).
Inspection shows that it will generally increase without limit as x — + co, because
of the presence of the first term, Ce***. In order to prevent this, and keep y/(x) finitc,
we must set the arbitrary coefficient C of the first term equal to zero. Thus we find

cC=0 (6-19)
Single valuedness is satisfied automatically by these functions. To study their con-
tinuity, we consider the point x = (., At this point the two forms of y(x), given by
(6-14) and (6-18), must join in such a way that y(x) and di(x)/dx arc continuous.
Continuity of W(x) is obtained by satisfying the relation
Dle™) Lo = Ale™™), o + Ble™™%)__,
which comes from equating the two forms at x = 0, This rclation yields

D=A+ B {6-20)
Continuity of the derivative of the two forms
dy(x) -
= —k.D kax
I k,De x>0
and
d'ﬁix] = ik, Aeix — ik, Be ix x <0

Scuola Dottorato da Vinci— 2009/10

Step potential Il

is obtained by equating these derivatives at x = 0. Thus we set

—kaD(e ), o = ik Ale™),_y — ik, Ble™™®)__,
Thig vielde
ik
2p-A-B (6-21)
ky
Adding (6-20) and (6-21) gives
p ik,
A== —
3 (1 + k,) (6-22)
Subtracting gives
b ik
B=—(1--2 -
5 ( h) (6-23)

We have now determined A, B, and C in terms of D. Thus the eigenfunction for the
step potential, and for the energy E < 1, is

%(1 + ik et ™ + g (1 —ikyfke ™ x<0

Yix) = (6-24)

De—k:x x> 0

The one remaining arbitrary constant, D, determines the amplitude of the eigen-
function, but it is not involved in any of its more important characteristics. The
presence of this constant reflects the fact that the time-independent Schroedinger
equation is linear in y(x), and so solutions of any amplitude are allowed by the
equation. We shall see that useful results can usually be obtained without bothering
to carry through the normalization procedure that would specify D. The reason is
that the measurable quantities that we shall obtain as predictions of the theory con-
tain D in both the numerator and the denominator of a ratio, and so it cancels out.

The wave function corresponding to the eigenfunction is

Aei.hxe-'is.lfﬁ + Be—iklxe iEtih — Aei{hx—ﬂhﬂ] + Bei{—klx’—ﬂrﬂ] x< 0

¥(xt) = De ~¥a%g 1t x>0

(6-25)

Autofunzione determinata completamente dalla
continuita a parte un coefficiente di normalizzazione

Proprieta piccola e piccolissima scala
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Step potential and tunneling

Y(x}
VO
N A N Ial I N
/ \_ :
- B 0
—>

d

Nota: la particella puo “tunnellare” se il gradino
termina dopo d < A5

W (x 1) Wix, 1) Al

|

Figure 6-7 Top: The eigentunction y(x) for a particle incident upon a potential step at x=
0, with total energy less than the height of the step. Note the penetration of the eigenfunc-
tion into the classically excluded region x > 0. Bottom: The probability density W*W¥ =
W* = ¢* corresponding to this eigentunction. The spacing between the peaks of 2 is
twice as close as the spacing between the peaks of .

Nota: nel caso (meno interessante) in cui E<V, la soluzione si trova con procedimento simile,
ma manca lI'andamento esponenziale decrescente
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Example 3: qguantum well (infinite)

Esempio: particella libera (elettrone) che si muove lungo X ‘: a ‘

essendo confinata in intervallo —a/2, a/2 da potenziale
; 2
Via) = {u 0<z<a |

v r<ixr>a

Suppongo, ragionevolmente, che la particella sia costretta a stare nella buca

‘(x,t) sara sovrapposizione di particella/onda che si muove vs dx e verso sin

“P(X,t) _ Aei(kx—a)t) n Bei(—kx—a)t) con @ :%

Condizioni al bordo: ¥=0perx=0ex=a

A =B oppure A=-B

Nota: qui non vale continuita della derivata a causa di V =2 «
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Infinte quantum well Il

Le condizioni al contorno sono le stesse della radiazione nella
cavita (scatola)
T

Si era ottenuto: kn — ng

Essendo la particella libera I'energia € solo cinetica:
2 21,2 2 2
p, Ak , i°r
J— — n

E, =-"= 2
2m 2m 2ma
Sistema con livelli discreti E
(quantizzati) di energia
Nota: n =0

Energia stato fondamentale non € nulla

Esempio: pallina m = 0.1 kg in scatolaa =10 cm > E,~1064 ] !
Elettrone m ~ 1039 kg in scatolaa=1nm > > E,~5x10?°J ~ 0.5 eV
(valore significativo se paragonato alle scale di energia tipiche nei
sistemi materiali)
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Quantum well (finite)

~ INC x
E3 \/0\/

Ep

EI /\
- 0
-af2 0 +af2 x

-af2 0 +af2
Figure 6-26 The three bound eigenfunctions for the square well of Figure 6-25.

Le condizioni al contorno non impongono piu ¥=0

- La funzione d’onda “deborda” esponenzialmente dalla buca
- I numero di livelli possibili e limitato

In_ogni caso: confinamento spaziale <-> quantizzazione livelli
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Example 4: qguantum harmonic oscillator

o f V(x)=(C/2)x?
o
& Soluzione autofunzioni oscillatore armonico piu complicata
£ Sempre autofunzioni confinate spazialmente (decadono
X / esponenzialmente oltre | punti di inversione)
Ey

Figure 6-35 The first few eigenvalues of the sim-
ple harmonic oscillator potential. Note that the alx)
classically allowed regions {between the intersec- e
tions of V(x) and E,) expand with increasing values
of E,.

Ey

Table 6-1 Some Eigenfunctions y(u) for the Simple Yolx)
Harmonic Oscillator Potential, where v is Y
Related to the Coordinate x by the Equation | /\

u= [(Cm)1/4/huzjx — \/ \/ x

Quantum Number Eigenfunctions wi(x)

0 IJIO = Aoe_ullz |
1 Y, = Aue” "2 ' i X
2 Wy = A,(1 — 2u2)e“"2f22 Yolx)
3 Y3 = A3(3u — 2u)e */?
4 Ya = A3 — 1207 + 4u4)e_”2"2 — \ ]
5 Ys = As(15u — 20u> + du)e ™2 o N 0 ‘ ¥
Livelli equispaziati
Autovalori: E, = (n+1/2)hv
(cfr. energia fotoni, che sono autofunzioni di oscillatore armonico di radiazione)
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Eigenfunctions and eigenvalues for QHO

Hamiltonian and energy EiQEI'IStﬂtES [edit]
Inthe one-dimensional harmonic oscillator problem, a paticle of mass & is subject to a3 potential =) given by =
1
T 2.2
Viz)= S ", o
where w iz the angular frequency of the oscillater. In ¢lassical mechanics, J‘ifil,.J.:E — [ iz zalled the spring siffness coefficiant, foree i
constant or=pring constant, and @i the angular frequenoy. =

The Hamiltonian of the paricle is:

: ? 2.2
= =— + 5 mw T, Wavefunction reprasentations for the &
2m 4 first eight bound eigenstates, m=0to 7.
where ¢ — - isthe position operator, and p izthe momentum operatar, given by The horizontal axis shows the position x.

The graphs are not nomalized

E"=r-.-.- |::r |+..E'I

The first term in the Hamiltonian represents the kinetic enerngy of the particle, and the second term represents the potential energy in which it resides.
In orderto find the anergy levels and the corresponding energy eigenstates, we must solve the time-independent Schridinger equation,

Hyp) = E )

We can aelva tha diffarantial aquatien in the ceerdinata basia, using a spactral mathed, Hturng cut that thara i a family of selutiens, In tha pesitien
basis they are

I 1 mw \ /4 muwz? mw -- -
I ' i TR : Probability densities )
UaliE) = A\ —— - | — e W . | —a ], — Ul 8000 2
' n': Ij' ]|'|. 91 1l ( h ) £ Hu (1II| k ‘.) T 1 2 |'_¥f.'.(?<)|' for the I::-:-u!-ud .
eigenstates, beginning with the
The functions A~y are the physicists’ Hermite polynomials: ground state (v = 07 at the
bottom and increazing in

. . AT
The carresponding energy levels are represernt higher probability

| denzities .
E, = hw (r.' . —)-

2
Thiz energy spectrum is notewarthy for three reasans. Firstly, the energies are "quantized", and may anly take the discrete halfintager multiples ':'fhw" Thiz i= 3 feature of many
quantum mechanical systems. In the following section on ladder operators, we will engage in a3 more detailed examination of this phenomenon. Secondhy, the lowest achiewable
energy is not zero, but ﬁ“;r.'fz. which is zalled the "ground state energy” or zero-point energy. In the ground state, according to quantum mechanics, an oscillator perfarms null
oscill ations and its axrerage. kinetic energy is positive. It is not obvious that this is significant, because normally the zera of energy is not a physically meaningful quantity, only
differences in energies. Newvertheless, the ground state energy has many implications, padicularly in quantum gravity. The final reason is that the energy levels are equally spaced,

unlike the Bohr model arthe paricle in a box.

Maote that the ground state probability density is concentrated atthe origin. Thiz means the padicle spends most of its time at the bottom of the potential weell, a5 we would expect for
a state with little energy. Asthe energy increases, the probability density becomes concentrated at the "classical turning peints", where the state's energy coincides with the potential
energy. Thiz is consistent with the ¢lassical harmonic ascillater, inwhich the patdicle spends most of its time (and is therefore most likely to be found) at the turning points, where it is

t %6'8 aelﬁtb’lth(')era'CF cr)reégu\?idnecrfc—e de?)')’ﬁ)"" thus satistizd. Proprieta piccola e piccolissima scala http://www.df.unipi.it/~fuso/dida—v. 1 - part 2 —pag. 22



Table 6-2. A Summary of the Systems Studied in Chapter 6

Name of
System

Zero
potential

Step
potential
(energy
below top)

Step
potential
(energy
above top)

Barrier
potential

(energy
below top)

Barrier
potential
(energy
above top)

Finite
square
well
potential

Infinite
square
well
potential

Simple
harmonic
oscillator
potential
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Physical Potential and Probability Significant
Example Total Energies Density Feature
Proton in E ki Results used
beam from for other
cyclotron - VW T systems
Conduction —_— V{x) Penetration
clectron near | E N of excluded
surface of — i * region
metal 0 0
Neutron £ vy Partial reflec-
trying to Vix) f\ [ tion at
escape ! potential
nucleus ) 5 * discontinuity
o« particle ‘ ! Tunneling
trying to E (\/\j__
escape ) ‘. L Wy
Coloumb ~ —, o VO ¥
barricr
Electron scat- No reflection
teringfrom — . g ! at certain
negatively | Ly cnergies
ionized atom ‘ I j |
Vix) L L x
0 a 0 a
Neutron . Vix) ! } Energy
bound in ‘j:E /‘\/\/’Mp\w quantization
nucleus ! |
- X
Molecule Approximation
strictly to finite
confined square well
to box
X
Atom of Zero-point
vibrating energy
diatomic
molecule
- X
L i colissime <cala.: — _ -/ JwwwsdE.unipi.it/~fuso/dida — v. 1 - part 2 —pag. 23
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Quantum matter: single atom

La descrizione quantistica della materia € essenziale per interpretare
correttamente l'interazione radiazione/materia, con approcci sia semiclassici
(radiazione come onda) che quantistici (radiazione come fotoni)

Paradiigma della materia e 'atomo, anzi il piu semplice tra gli atomi: idrogeno

71 71

Modello planetario dell'atomo (classico): v _ Le
- Equilibrio (forza Coulomb da acc. centr.) r 4me,r’ | 7e? 7o | 7e!
p Ll ze  zZe 1
, : L 2 4me,r  4me,l 2 4me,r
- Energia (elettrostatica + cinetica) 1 . 7o
E=—mv" —
2 dre, v
\ V() i

+— 15

Confinamento

~1/r ~1/r _ K _
quantizzazione
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Bohr atom (old MQ)

Ipotesi di Bohr (quantistica): L:mpr:ni p
2

. . . . 2712
Quantizzazione raggio orbitale: . _n he,

mnZe’ ng
.
. . . mZe* 1 i
Quantizzazione energia:  E, =-o= > E =-13.6— eV —_ n=
’ n
n=1

Sistema con livelli discreti
(quantizzati) di energia

Esistono orbite stabili con momento angolare quantizzato
—> energia quantizzata
—> possibilita di transizioni tra livelli discreti (spiegazione spettri sperimentali)
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Schroedinger atom (hydrogen)

hZ
T Vig(rBe) + V(g (r0,0) = Eyir.8,0) (7-12)

where

s Léaf,e 1 e/ @ 1 &

Vicag ( —) * oo ( o Fé) MO R O
is the Laplacian operator in the spherical polar coordinates r, 0, @. For the details of
the coordinate transformation leading to (7-12) and (7-13), the student should consult
Appendix M. A comparison of the forms of the Laplacian operator in rectangular
and spherical polar coordinates, (7-8) and {7-13), shows that we have simplified the
cxgression of the potential energy function at the expense of considerably compli-
catmg_ the expression of the Laplacian operator in the time-independent Schroedinger
equation that must be solved.

Nevertheless, the change of coordinates is worthwhile because it will allow us to
find solutions 1o the time-independent Schroedinger cquation of the form

(r.8@) = RN D(p) (7-14)
That is, we shall show that there are solutions ¥(r.0.0) to (7-12) that split into prod-
ucts of three functions, R(r), ®(6), and ®(¢), each of which depends on only one of
the coo'rdinates. The advantage lies in the fact that these three functions can be found
l?y solving ordinary differential equations. We shaw this by substituting the product
to.rm, Y(rd.p) = RINO(B)D(p), into the time-independent Schroedinger equation ob-
tained by cvaluating the Laplacian operator in (7-12) from (7-13). This yields

nlleé JdROD 1 ! 7 i
R[LE(otReny, L e R00y, 1 rren
2u |t ar ar rtsin 6§ 0g a0 risin? § dpl

7 + V(r)RO® = ERGD
Carrying out the partial differentiations, we have

Wieed f, dR RO 4/ 46 RO do
77 T\t lsinfl— |+ —— —
wl| r?odr dr 72 sin § d8 dd r?sin? @ do?

Ricerca autofunzioni complicata da
simmetria sferica
(coordinate sferiche)

Scuola Dottorato da Vinci—2009/10

Proprieta piccola e piccolissima scala

In this equation we have written the partial derivative 0R/ér as the total deriva-
tive dR/dr since the two are cquivalent because R is a function of r alone. The
same commenl applies to the other derivatives. If we now multiply through by
—2ur? sin? §/RO®AK?, and transpose, we obtain
1 0 sin®f 4/ ,dR sinf d (. dO© 20, .
— = — =] - —|sin8— ) — 5 r*sin® J[E — V(r
D do’ R o\ &) @ e [E = Vi

do

As the left side of this equation does not depend on r or 4, whereas the right side
does not depend on ¢, their common value cannot depend on any of these variables.
The common value must therefore be a constant, which we shall find it convenient o
designate as —m?. Thus we obtain two equations by setting each side equal to this
constant

d*

P —mi® (7-15)

and

Ld dR v d . dO 2 0 i m}

Bt S sin S S E— v = -

Rdr (' dr) @ sin 6 df (“" 49) g LE VI =Gy
By transposing, we can rewrite the second equation as

1 d{,dR 2ur? _ m? 1 d [ . _d©

Lﬁ%(r W>+ h* LE_V(r)]isinZO_Gsinﬁﬁ 5'"(?%

Since we have here an equation whose left side docs not depend on onc of the vari-
ables and whose right side does not depend on the other, we conclude again that both
sides must equal a constant. It is convenient to designatc this constant as I({ + 1).
Thus we obtain, by setting each side equal to [{I + 1), two more equations

| d(. . d®\ me
_ e - 7.1
sin 0 40 (S'" b dB) *anzg - DO 716
and
1d{,dRY\ 2u _ R
?E(r E—)+F[E—V(F}JR—!(I+))P (7-17)

We see thal the assumed product form of the solution, ir.0,i) = R(NO(A)D(op), 15
valid because it works! We also see that the problem has been reduced to that of
solving the ordinary differential equations, (7-15), (7-16), and (7-17), for d(p), S8),
and R(r).

In solving these equations, we shall find that the equation for ®(¢) has acceprable
solutions only for certain values of m,. Using these values of m, in the equation for
G(f), it turns out that this equation has acceptable solutions only for certain values
of 1. With these values of ! in the equation for R(r), this equation is found to have
acceptable solutions only for certain values of the total energy E; that is, the energy
of the atom is quantized.

http://www.df.unipi.it/~fuso/dida —v. 1 - part 2 —pag. 26



Scuola Dottorato da Vinci—2009/10

Hydrogen atom Il

7-5 EIGENVALUES, QUANTUM NUMBERS, AND DEGENERACY

One of the important results of the Schroedinger theory of the one-electron atom is
the prediction of (7-22) for the allowed values of total energy of the bound states of
the atom. Comparing this prediction for the eigenvalues

uZe* 136V
(dme 22000 n?
with the predictions of the Bohr model (see (4-18)), we find that identical allowed en-
ergies are predicted by these treatments. Both predictions are in excellent agreement
with experiment. Schroedinger’s derivation of (7-22) provided the first convincing
verification of his theory of quantum mechanics. Figure 7-3 tllustrates the Coulomb
potential V(r) for the one-electron atom, and its eigenvalues E,.

What is the relation between the Coulomb potential and its cigenvalues, and the
potentials studied in Chapter 6 and their eigenvalues? One obvious difference is that
the guantum mechanical calculations leading to the eigenvalues of the Coulomb
potential are appreciably more complicated. But the Coulomb potential is an exact
description of a real threc-dimensional system, The potentials previously treated are
approximate descriptions of idealized one-dimensional systems, which are designed
to simplify the calculations. Part of the complication for the Coulemb potential is
also due to its spherical symmetry, which forces the use of spherical polar coordinates
instead of rectangular coordinates.

The similarities are much more fundamental than the differences. For the Coulomb
potential, as for any other binding potential, the allowed total energics of a particle
bound to the potential are discretely guantized. Figure 7-4 makes a comparison be-
tween the allowed energics fer a Coulomb potential and for several one-dimensional
binding potentials. In this figure the Coulomb potential is represented on a crosscut
along a diameter through the one-electron atom. Note that all the binding potentials
have a zero-point energy. That is, in all cases the lowest allowed value of total energy
lies above the minimum value of the potential energy. Associated with its zero-point
energy, the one-electron atom has a zcro-point motion like other systems described
by binding potentials. In the following scclion we shall sce that this phenomenon can
give us a basic explanation of the stability of the ground state of the atom,

E.=—

< r
_0.85%}1
-151 T
-339 Ty

3
&
g
g -136l g

Vir)

Figure 7.3 The Coulomb potential V{r) and its eigenvalues E,. For large values of n the
eigenvalues become very closely spaced in energy since E, approaches zero as n
approaches infinity. Note that the intersection of V(r) and E,, which defines the location
of one end of the classically allowed region, moves out as n increases. Not shown in this
figure is the continuum of eigenvalues at positive energies corresponding to unbound
states.
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Table 7-2 Some Eigenfunctions for the One-Electron Atom

Quantum Numbers

n l nm; Eigenfunctions

32

'1”100=L(£) g~ Zriao

V= \do
1 [z 3f2( Zr

2 0 0 = - 2T Yo Zr2ac
=il (0

1 0 0

4
1 (zZ\*z
z 1 0 Yai0 = ) I Y
42z \do/  ao
1 (Z\*Z .
2 L *1 W2141 =W(—) ZL p=2ri2a0 ip g o tio
7 \%o Qo
1 zZ\? Zr _Z%?
3 0 0 =— (= 271842 —#r{3a
¥300 P (ao) a9 + e e
- 3/2
3 1 0 .‘¢,310=i Z 6—£ Ee—zﬁ&mcosa
81\/1? 2o ag / ag
a2
301 t1 Yarx1 = L (Z 6 — 2T\ 2T y-mi3a0 i g oo
81+/n \4o g/ ao
1 zZ 32 ZZ 2
3 2 0 Vazo=——F7=|— —:— e Z39(3 gos? B — 1)
81./6m \do a;
1 (Z\32 72,2 _
32 *1 Vaze1=—F—— zr e 71300 gin 0 cos 0 ete
81./n \a9 al
1 ZNZY  rira 2 i
32 42 lllsziz=m(a) o 1330 gin? g g * 21w

Autovalori simili a Bohr

Autofunzioni con “armoniche sferiche”
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0.02

0.01

0
0.02

0.01

0

Hydrogen atom Il

Autofunzioni dipendentida r

/..

05

|

05

01}~
] T S S R N T ]
0 10 A 20

5 15
0.1
n=3,I=1
T 1 ™ T T I T T R R N U O B
o 5 10 & 15 25
0.1
1\ n=3,i=2
I I T O R T T I
0 108 15 20 25
r
aof/Z

Figure 7.5 The radial probability density for the electron in a one-electron atom for fi =

Risolvendo atomo di idrogeno con
Schroedinger si trovano stati stazionari

Esistono livelli stabili con energia
guantizzata

Applicabile anche ad altri atomi (con
maggiori difficolta)

Esistono “degenerazioni”’ dei livelli
(scompaiono per altri atomi e scompaiono
in parte anche per idrogeno in trattazione
relativistica)

1, 2, 3 and the values of / shown. The triangle on each abscissa indicates the value of
T as given by (7-29). For n = 2 the plots are redrawn with abscissa and ordinate scales
expanded by a factor of 10 to show the behavior of P,r) near the origin. Note that in the
three cases for which /=1_,, =n — 1 the maximum of P,(r) occurs at Faone = N2ag/Z,

varhlab fm e diamke L. AL _

Scuola Dottorato da Vinci—2009/10

Proprieta piccola e piccolissima scala

http://www.df.unipi.it/~fuso/dida—v. 1 - part 2 —pag. 28



Conclusions

» Quantum mechanics required to interpret matter at the local (ultra-small) scale

» Some words (concepts) of MQ are: state vectors, observables, wavefunctions,
energy levels, ...

» Confinement, i.e., boundary conditions, leads to quantuized levels

» “Isolated” material systems (e.g., atoms, but also molecules and small clusters)
show quantized levels thanks to Bohr or Schroedinger

» Also quantum boxes (wells) and harmonic oscillators have quantum properties
» Tunneling is a possibility according to MQ (classically impossible)

» We will now move to the quantum description of a more complicated system,
able to depict solid state matter
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