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This short text discusses a simple and rather straightforward method to solve the relevant equa-
tions in circuits comprising resistors and capacitors, or resistors and inductances. Transient (i.e.,
time-dependent) solutions are considered.
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FIG. 1. Schemes of the simple circuits considered in the text,
made of a resistor-capacitor (a) and resistor-inductance series
(b).

I. INTRODUCTION

We will consider here the simple circuits illustrated in
Fig. 1, consisting in the series of either a resistor and a
capacitor or a resistor and an inductance . Such compo-
nents will be considered as ideal, i.e., the total (equiva-
lent) resistance of the circuits is R, the capacity C, the
self-inductance L. In other words, we won't consider in-
ternal or spurious factors such as, the resistance of the
coil forming the inductance, and the internal resistance
of the generators, if any. We will analyze as �rst the
behavior of the RC circuit. We will then see that the
relevant equations for the RL are formally similar and
we will convert the solution of the RC into that of the
RL circuit. Note that the method presented here, based
exclusively on real quantities, has nothing to do with the
(more powerful and e�ective) approach based on complex
quantities and functions, which you will study later on
during the course.

II. THE RC CIRCUIT

We will �rst assume that an (ideal) voltage generator
V0 is connected at time t0 = 0 to the circuit of Fig. 1(a).
The initial condition is that the capacitor has no net
charge on its plates. Therefore, we will investigate the
capacitor charging, which is well known to you all. Its
analysis is however useful for the next steps, where we
will assume an alternate voltage source. Said Q(t) the
time dependent charge at the capacitor plates [the initial
condition is Q(t = t0 = 0) = 0], the equation mastering
the circuit is:

V0 =
Q(t)

C
+RI(t) , (1)

as derived from the de�nition of capacitance and the
Ohm's law. The current I(t) �owing into the resistor
is given by the charge leaving the capacitor plate (a mi-
nus sign must be used). Note that, if we assume V0 > 0
(the positive pole of the generator is connected to the ca-
pacitor), the sign of such current is negative, leading to
I(t) = −(−dQ(t)/dt) = dQ(t)/dt. Hence, the equation
reads:

V0 =
Q(t)

C
+R

dQ(t)

dt
(2)

that is, after algebraic manipulations:

dQ(t)

dt
=

1

RC
(CV0 −Q(t)) . (3)

Note that, for dimensional reasons, RC must be a time:
we will place hereafter RC = τ . As you know, this is
a �rst order di�erential equation which can be easily
solved. A very rough method (for physicists, not mathe-
maticians!) consists in rewriting the equation above as

− 1

RC
dt = − dQ(t)

CV0 −Q(t)
=
dξ

ξ
, (4)

where in the last term we have introduced the variable
ξ = CV0 − Q(t), with dQ(t) = −dξ. The equation can
be integrated in both sides for the time range t0 = (0, t),
corresponding to ξ0 = CV0 and ξ(t) = CV0 − Q(t) (we
have used the initial condition on the charge mentioned
above), respectively. Integration leads to

ln(
ξ(t)

ξ0
) = − t

τ
, (5)

that, after coming back to the explicit variable Q(t),
reads:

Q(t) = CV0(1− exp(−t/τ)) . (6)

The above equation dictates the temporal evolution
of the charge at the capacitor plates. The other rele-
vant quantities can then be obtained. For instance, the
current �owing into the resistor is I(t) = dQ(t)/dt =
(CV0/τ)exp(−t/τ) = (V0/R)exp(−t/τ) (the negative
sign coming out from the derivative is canceled because
of the previously mentioned considerations on charge and
current signs), whereas the voltage drop across the re-
sistor is ∆VR(t) = RI(t) = V0 exp(−t/τ). Note that
the expression for the voltage measured between the ca-
pacitor plates is di�erent: ∆VC(t) = Q(t)/C = V0(1 −
exp(−t/τ)).
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A. RC with an alternate generator

Let's now consider an alternate voltage generator in
the place of the continuous generator assumed before. In
particular, we will put V (t) = V0 cos(ωt), which describes
an AC generator (ideal, with no internal resistance and
purely "monochromatic"). The relevant equation is now

V0 cos(ωt) =
Q(t)

C
+R

dQ(t)

dt
. (7)

From a qualitative point of view, the behavior of the
circuit depends on the angular frequency of the gener-
ator. For instance, in the case of small ω, or, better,
ωτ << 1, the capacitor will have time to charge and dis-
charge (the time constant of both processes is τ = RC),
hence reaching the steady state conditions where no cur-
rent �ow from or to the capacitor plates. In the steady
state, no current �ows through the resistor, hence no
voltage will be read across the resistor. In fact, this is
what happens, for instance, in the AC �lter at the input
stage of an oscilloscope, which is used to cut (remove)
the continuous (DC) component of a signal. In the op-
posite case, ωτ >> 1, the capacitor will not have enough
time to complete the charge/discharge process, and the
current will �ow through the resistor like the capacitor
were a short-circuit. Very nice! We have a system which
responds to the frequency.
Let's look for a more quantitative solution. In par-

ticular, we want to see if a trial solution of the kind
Q(t) = Q0 cos(ωt + φ), with Q0 and φ parameters to
be determined, satis�es the equality stated in Eq. 7. We
remind that dQ(t)/dt = −ωQ0 sin(ωt+ φ) and also that
sin(α + β) = sinα cosβ + cosα sinβ and cos(α + β) =
cosα cosβ − sinα sinβ.
By placing the derivative of the trial function Q(t) into

the right side of Eq. 7 and using the above mentioned
trivial trigonometric relations, we get:

V0 cos(ωt) =
Q0

C
(cos(ωt) cosφ− sin(ωt) sinφ)− (8)

− ωQ0R(sin(ωt) cosφ+ cos(ωt) sinφ) . (9)

If we want the trial function Q(t) to be a solution, i.e.,
to ensure the equality between left and right sides, we
must separately consider the terms oscillating as sin(ωt)
and cos(ωt). For the �rst terms, we get

0 = −Q0

C
sinφ− ωQ0R cosφ , (10)

that is

tanφ = −ωτ , (11)

where τ = RC. For the equality of the terms containing
cos(ωt) we need

V0 =
Q0

C
cosφ− ωQ0R sinφ , (12)

that is

Q0 =
V0

cosφ

1
1
C − ωR tanφ

= CV0
1√

1 + ω2τ2
, (13)

where for the last passage we have used tanφ = −ωτ ,
as found above, and the trigonometric relation cosφ =

1/
√

1 + tan2 φ.
Therefore, the charge at the capacitor plate oscillates

at the angular frequency ω with an amplitude Q0 propor-
tional to 1/

√
1 + ω2τ2 and a dephasing φ = arctan(−ωτ)

with respect to the "forcing" oscillation. The limiting
cases lead to Q0 → CV0, φ→ 0, and Q0 → 0, φ→ −π/2
for ωτ << 1 (ωτ → 0) and ωτ >> 1 (ωτ →∞), respec-
tively.
The amplitude of the voltage read between the capac-

itor plates will be

∆VC,max =
Q0

C
= V0

1√
1 + ω2τ2

, (14)

that drops to zero for increasing ω.
The amplitude of the voltage read across the resistor,

which is proportional to I(t) = dQ(t)/d(t), is instead
given by

∆VR,max = RImax = R
dQ

dt
|max = V0

ωτ√
1 + ω2τ2

(15)

which is null for ωτ → 0, but tends to V0 for increasing
ω (the dephasing tends to π, as you can easily check).
Very, very nice! We have again a behavior which

depends on the angular frequency! Try to �nd out
the mathematical and physical implications for that, by
noticing, among other aspects, that the considered circuit
can act, for speci�c frequencies and choices of the volt-
age to be taken as the output (the one read across either
the capacitor or the resistor) as a "low-pass" or "high-
pass" frequency �lter. This is well illustrated by Fig. 2,
where the amplitude of the signal read across the capaci-
tor and the resistor [panels (a) and (b), respectively] are
numerically calculated as a function of the (dimension-
less) product ωτ .

III. THE RL CIRCUIT

Let's now switch to the RL circuit depicted in
Fig. 1(b), and use it in the same con�guration as in
Sec. II. The equation ruling the temporal behavior of
the circuit will now read

V0 = L
dI(t)

dt
+RI(t) , (16)

where we have used the Ohm's law to express the voltage
drop across the resistor and the equation describing the
voltage between the inductor ends (∆Vind = LdI/dt).
Note that the choice of sign is correct. In fact, the minus
sign appearing in the Faraday's law at the basis of the in-
ductor equation (see, e.g., the situation established when
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FIG. 2. Numerical calculations of the maximum amplitude
∆VC,max and ∆VR,max de�ned in the text [plot (a) and (b),
respectively] as a function of ωτ . Bear in mind that ω = 2πf ,
with f frequency of the alternate generator. High and low fre-
quencies components of the "input" signal V (t) are practically
cut (heavily suppressed) depending on whether the "output"
signal is measured across the capacitor or the resistor.

an ideal solenoid is used as a model inductor) states that
the output lead of the inductor stays at a voltage lower
than its input, where input and output are de�ned ac-
cording to the direction of the current �owing through the
solenoid (do your best to convince yourselves on that!).

Formally, Eq. 16, which replaces Eq. 1, is similar to
Eq. 1, but for the di�erent physical quantities it contains.
The solution, assuming t0 = 0 and I0 = 0, will then be:

I(t) =
V0
R

(1− exp(−t/τ)) (17)

with τ = L/R (note the di�erence with respect to the
time constant of the RC circuit!).

The process is somehow similar to the one experienced
by a capacitor during its charging: now, it is the cur-
rent which increases as a function of time approaching
the limit level V0/R. One option to appreciate the in-
timate motivations for such a similar behavior is based
on considering that during the charging process a capac-
itor gets an energy CV 2

0 /2 (an equal amount of energy is
"dissipated" by the Joule e�ect of the resistor - please,
demonstrate it!). In the process involving the inductor,
it gets an energy LI2/2 (an equal amount of energy is
"dissipated" by the resistor, as well). So both processes
entail energy storage "somewhere in the space" (in the
capacitor or the inductor, respectively), energy which is
obviously provided by the generator.

A. RL with an alternate generator

Consider the RL circuit connected to to the alternate
generator, V (t) = V0 cos(ωt). The di�erential equation
mastering the system is

V0 cos(ωt) = L
dI(t)

dt
+RI(t) , (18)

very similar, formally, to Eq. 7.
The solution, easily obtained by following the above

mentioned steps, is I(t) = I0 cos(ωt+ φ) with

tanφ = −ωτ (19)

I0 =
V0
R

1√
1 + ω2τ2

. (20)

The voltage read across the resistor will now have an
amplitude

∆VR,max = RImax = V0
1√

1 + ω2τ2
, (21)

whose behavior as a function of ωτ is the same of the pre-
viously calculated ∆VC,max [see Fig. 2(a)]. Therefore, if
the "output" is taken across the resistor, the RL circuit
acts as a "low-pass" frequency �lter. Note in particular
that the (angular) frequency ω1/2 corresponding to an
output signal amplitude equal to one half of the input
signal amplitude (this is required in some practical exer-
cise!), can be obtained by solving the algebraic equation

V0
1

2
= V0

1√
1 + ω2

1/2τ
2
, (22)

that leads, after a few basic manipulations, to ω1/2 =√
3/τ =

√
3R/L (remember that we are here assuming

all internal resistances negligible, that must be carefully
veri�ed in practical experiments). The corresponding fre-
quency f1/2 of the signal generator is f1/2 = 2πω1/2 =

2π
√

3R/L ≈ 65R/L.
On the contrary, the voltage across the inductor will

be ∆VL = LdI(t)/dt. Its amplitude is

∆VL,max = L
dI(t)

dt
|max = V0

ωτ√
1 + ω2

1/2τ
2
, (23)

which behaves similarly to the amplitude of the voltage
read across the resistor in the RC circuit. In other words,
if the "output" is read across the inductor, a "high-pass"
frequency �lter will be attained. Please note, once more,
that the behavior of the circuit depends on what you are
measuring.

IV. THE DEPHASING AND ITS

VISUALIZATION

As already mentioned, one gets in both circuits (but
with di�erent values and expressions of the characteristic
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FIG. 3. Numerical calculations of what should be observed
in an ideal experiment carried out according to the recipes
described in the text. The oscilloscope screen is simulated:
note that the sweep speed (TIME/DIV) is adjusted according
to the measured signals, as indicated in the bottom left of
the plots. Note also that, to make the simulation a little
bit more realistic, a characteristic time τ = 100µs has been
considered and that the simulated traces corresponding to the
two channels have been vertically shifted each other for the
sake of clarity.

time τ) φ = arctan(−ωτ). In order to predict something
which can be visualized in practical experiments, we will
concentrate on the RL circuit, assuming that V (t) and
VR(t) = RI(t) are simultaneously measured.[1] This can
be easily accomplished by using a two channel oscillo-
scope, with, say, the probe of channel 1 is connected to
the signal generator and that of channel 2 to the resis-
tor [the relevant nodes are indicated in red with 1 and
2 in Fig. 1(b)]. Obviously, as also shown in the �gure,
the "bottom" line of the circuit must be connected to
ground.

The term φ plays the role of dephasing between the
periodical signals visualized by the two channel traces.
In order to get a stable and reliable visualization, you
must obviously take care of the oscilloscope trigger, for

instance by triggering on channel 1 (trigger source CH1,
trigger mode "normal", trigger level and slope appropri-
ate to the situation). Figure 3 shows what you should
expect to observe on the screen for a few selected choices
of the generator frequency f = 2πω (the plots are calcu-
lated numerically, the real experimental conditions will
possibly lead to much less neat traces!). The graphs ac-
count also for the amplitude decrease as a function of
ωτ discussed in the previous section. The change in the
dephasing (whether negative or positive is impossible to

FIG. 4. Same of Fig. 3, but simulating the oscilloscope in the
X-Y operating mode (Y is channel 2, X is channel 1). The
same V/DIV setting is used for all plots (for both channels).

understand from the plots, consider this point!) is clearly
evident!
The previous simulation refers to the use of the oscillo-

scope in the Y-t mode, as required to visualize waveforms
(voltages which vary as a function of time). We can also
simulate the oscilloscope readout seen when the X-Y op-
erating mode is selected. This is shown in Fig. 4 for a
few selected choices of ωτ . Elliptical traces are obtained,
and you must do your best to understand why!

[1] In the practice, one would avoid to take the reference sig-
nal connecting the oscilloscope to the point 1 in Fig. 1 in
order to prevent altering the circuit behavior. As a matter
of fact, the oscilloscope, as any instrumentation, has its
own input impedance (typically modeled by an RC circuit
with R = 1 Mohm and C = 25 pF). Even though this leads

quite often to practically negligible e�ects, a safer way to
get the reference signal is to use the TRIG OUTPUT or
SYNC output of the signal generator, which consists in a
TTL signal having the same frequency and phase of the
generated signal.


