Calculation of structures and transition rates of muonic molecular ion H_2Mu^+

Yukio Toya, Yasushi Kino, Hiroshi Kudo and Keiichi Yokoyama¹

Department of Chemistry, Tohoku University, Sendai 980-8578, Japan Tel +81-22-217-6598, Fax +81-22-217-6597 E-mail: toya@mail.cc.tohoku.ac.jp

¹ Japan Atomic Energy Research Institute, Ibaraki 319-1195, Japan

A muonic molecular ion H_2Mu^+ consists of a positive muon, two protons and two electrons. The existence of H_2Mu^+ was suggested by analyzing the μ SR (Muon Spin Relaxation) signals, injecting muons into the solid hydrogen target [1]. Belov et al. calculated the lifetimes of excited states of H_2Mu^+ for $J=0\sim 2$ (J is the total angular momentum of H_2Mu^+) with the conventional method of molecular dynamics [2]. To investigate the formation and cascade process of H_2Mu^+ , we calculated not only low-lying rotational-vibrational states but also highly excited states ($J \leq 6$, $v \leq 15$).

The electronic motion can be separated from that of the muon and proton motion in adiabatic approximation because the mass of an electron is much smaller than that of a muon and a proton. We treated H₂Mu⁺ as a three-body system on the adiabatic potential surface due to the electronic motion. The potential energies of H₂Mu⁺ in the ground electronic state ¹A' was calculated by a full configuration interaction (CI) treatment with a [8s6p2d1f] Gaussian-type basis set [3].

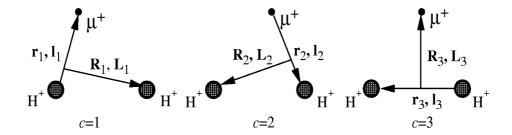


Figure 1: Three rearrangement Jacobian coordinates of three-body system.

The total energies and wave functions of the three-body system were calculated with a coupled rearrangement channel method [4]. The total three-body wave function Ψ_{JMv}^{tot} is described as a sum of the three rearrangement channel amplitudes,

$$\Psi_{JMv}^{tot} = \sum_{c=1}^{3} \sum_{\ell_c L_c nN} A_{\ell_c L_c nN}^{(c)Jv} r_c^{\ell_c} R_c^{L_c} \exp\left(-\frac{r_c^2}{\nu_n^2} - \frac{R_c^2}{\lambda_N^2}\right) \left[Y_{\ell_c}(\hat{\mathbf{r}}_c) \otimes Y_{L_c}(\hat{\mathbf{R}}_c)\right]_{JM}, \tag{1}$$

where M is projection of J on z-axis and v is the number of nodes of the wave function. The Gaussian range parameters ν_n and λ_N are taken to be a geometrical progression. Each channel

amplitude is described by the coordinates in Fig. 1. The coordinates c=1 and c=2 are suited for describing the HMu + H⁺ configuration. The coordinate c=3 is suited for describing the H₂ + μ ⁺ configuration. The electric dipole transition (E1) rates λ_i of the rotational-vibrational states of H₂Mu⁺ were calculated with

$$\lambda_i^{E1} = \sum_f \frac{4(E_f - E_i)^3}{3\hbar^4 c^3} \left| \left\langle \Psi_i^{tot} \right| \mathbf{d} \left| \Psi_f^{tot} \right\rangle \right|^2, \tag{2}$$

where Ψ_i^{tot} and Ψ_f^{tot} are the total wave functions of initial and final states. The values E_i and E_f are the total energies of initial and final states. The vector **d** is the dipole moment of H_2Mu^+ .

The binding energies ε respected to the lowest two-body break-up threshold $H_2 + \mu^+$ (H^+), the mean distances r_{ij} between the constituent particles (i,j) and the E1 transition rates λ^{E1} of states of H_2Mu^+ and H_3^+ are listed in Table 1, for example. Since the adiabatic potential is independent of the mass of the three particles the molecular ion H_2Mu^+ is expected to be analogous to H_3^+ , but the energy and structure are different from H_3^+ . The structure of H_2Mu^+ and H_3^+ in the ground state are an isosceles triangle and an equilateral triangle, respectively. Because a muon is lighter than a proton, the binding energy of muon in H_2Mu^+ is smaller than the proton in H_3^+ . Therefore the distance $r_{p\mu}$ in H_2Mu^+ is longer than the distance r_{pp} in H_3^+ . While the distance r_{pp} in H_2Mu^+ is shorter than the distance r_{pp} in H_3^+ , because an electron density in the sub-system H_2 of H_2Mu^+ is higher than that of H_3^+ .

The E1 transition rates of the excited states are smaller than the decay rate of muon (0.455 μ s⁻¹). The molecular ion H₂Mu⁺ formed in highly excited states can not reach the ground state within the lifetimes of muon.

Table 1: Binding energies ε respected to two-body break-up threshold $H_2 + \mu^+$ (H⁺), mean distances $r_{p\mu}$ between muon and proton, and mean distances r_{pp} between two protons and lifetimes of states $\binom{2s+1}{v}J_v^{\pi}$ of H_2Mu^+ and H_3^+ . (s is the total spin of two protons, π is the parity of the wave function.)

system	states $\binom{2s+1}{v}J_v^{\pi}$	ε (au)	$r_{p\mu} (\mathrm{au})$	r_{pp} (au)	λ^{E1} (s ⁻¹)
H ₂ Mu ⁺	$^{1}0_{0}^{+}$	0.1461	1.812	1.717	0
H_3^+	$^{1}0_{0}^{+}$	0.1608		1.722	0
H ₂ Mu ⁺	$^{1}0_{5}^{+}$	0.1095	1.860	2.202	4.0×10^{3}
$\mathrm{H_2Mu^+}$	¹ 5 ₀ ⁺	0.1368	1.843	1.741	1.3×10^{1}

Acknowledgments. The computations were partially carried out on the RIKEN supercomputer VPP700/128.

- [1] W. Higemoto, K. Satoh, N. Nishida, K. Nishiyama and K. Nagamine, Phys. Rev. B 60, 6484 (1999).
- [2] A. K. Belov, Yu. M. Belousov and V. P. Smilga, Physics of Atomic Nuclei 57, 991 (1994).
- [3] A. Ichihara and K. Yokoyama, J. Chem. Phys. 103, 2109 (1995).
- [4] M. Kamimura, Phys. Rev. A 38, 621 (1988).