New developments in nonlinear optical rotation
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Recent investigations have shown that measurements of nonlinear optical rotation related to
the evolution of light-induced atomic polarization may be among the most sensitive techniques
for detecting shifts of Zeeman sublevels (sensitivity ~ 10~% Hz/y/Tz) [1]. Nonlinear optical
rotation can therefore be applied to precise electric and magnetic field measurements [1, 2],
as well as sensitive tests of fundamental symmetries [3, 4, 1]. Nonlinear optical rotation is
also closely related to phenomena such as electromagnetically induced transparency and dark
resonances [5, 6], as demonstrated in the study of light propagation dynamics [7]. Here we
present recent advances in the understanding and applications of nonlinear optical rotation.

1. Sensitive Magnetometry using Nonlinear Magneto-Optical Rotation (NMOR).

We have performed a systematic study of the shot-noise-limited sensitivity of an NMOR-
based magnetometer as a function of light intensity, light frequency, atomic density, and laser
beam diameter. The magnetometer consists of a modulation polarimeter which measures ro-
tation of the polarization plane of a laser beam resonant with transitions in Rb. Rb vapor
is contained in an evacuated cell with antirelaxation coating [8] which enables atomic ground
state alignment to survive many thousand wall collisions. This leads to ultranarrow (~ 107°
G) dispersion-like features in the magnetic field dependence of optical rotation [1]. It is shown
that through an appropriate choice of parameters the shot-noise-limited sensitivity to small
magnetic fields can surpass 3 x 10712 G/v/TIz [1], about an order of magnitude improvement
over conventional optical pumping magnetometers.

2. NMOR via Alignment-to-Orientation Conversion.

At high light intensities a previously unrecognized mechanism, alignment-to-orientation
conversion [10] due to the combined action of the magnetic field and light electric field, has
been found to play an important role in NMOR [9]. It is found to be the primary mechanism
responsible for NMOR at the light frequencies and intensities where the highest sensitivity to
magnetic fields is achieved [1]. This effect leads to a change of the overall sign of rotation
for closed F' — F + 1 transitions as light power is increased. The effect is demonstrated by
measurements in Rb and density matrix calculations.

3. NMOR in separated light fields.
NMOR in rubidium vapor contained in a paraffin-coated cell has also been investigated
using the method of separated pump and probe laser fields [11]. With appropriate choice of



laser frequencies, strong rotation signals can be obtained when pump laser light is resonant
with a transition from one hyperfine level of the ground state and optical rotation is measured
in another. This technique may be applied to magnetometry.

4. Nonlinear Self-rotation.

Self-rotation (SR) of the light polarization ellipse was among the first nonlinear optics
processes studied at the dawn of the laser era [12]. In collaboration with R. Y. Chiao and
D. S. Hsiung, we have recently investigated SR in near-resonant atomic media [13]. SR can
lead to systematic effects in optical rotation measurements, and is thus important in work
employing optical rotation for precision measurements.

5. Nonlinear Electro-Optic Effects (NEOE).

We are also investigating nonlinear optical effects which arise when near-resonant light
propagates in an atomic medium in the presence of an electric field. NEOE can be applied
to sensitive measurements of permanent electric dipole moments [3, 4, 1], as well as for non-
intrusive, spatially and temporally resolved electromagnetic field measurements.
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