Controlled Decoherence in Multiple Beam Ramsey Interference
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The transition between quantum and classical systems is usually ascribed to decoherence ef-
fects, which become increasingly important for larger size systems and tend to obscure the quan-
tum behavior [1]. Quantum decoherence effects also come into play in the famous Gedanken
experiments on the wave-particle duality of matter. For example, in the double slit experiment
with electrons, a wavepacket passes simultaneously through both slits and forms an interfer-
ence pattern manifesting the wave nature. When a photon is scattered on one of the interfering
paths, the interference pattern is destroyed and the particle behavior takes over, as suggested
by complementarity [2].

Here, we report on the study of controlled decoherence in a four-path atomic interference
experiment. While in two-beam interference experiments the observation of a path always
destroys the fringe signal, we demonstrate that the scattering of a photon on one of the paths
in the multiple path arrangement cannot only lead to a decrease, but, under certain conditions
also to an increase of the fringe contrast [3]. In both cases the scattering of a photon leads to
an irreversible loss of observable information at the atom detector. The information is stored
in the photon and allows in principle a detection of the path of the atom, i.e. it leads to an
increased possible which-path information.

Our experimental setup employs a multiple path generalization of a Ramsey experiment
performed in a cesium atomic beam apparatus. In a first optical pulse, cesium atoms are
optically pumped into a dark coherent superposition of the magnetic sublevels mp = =3, -1,1,3
of the F' = 3 hyperfine ground state. After time T, the coherent superposition is probed with
a second optical pulse, which again projects the atoms onto a dark state. We observe a sharp
Airy-function like interference signal in the number of atoms remaining dark in the second pulse
[4]. Between the Ramsey pulses the path in mp = 3 can be observed by the following pulse
sequence. With a microwave m-pulse the mr = 3 component is transferred into F' = 4, mp = 4.
Then, an optical pulse of variable length tuned to a closed cycling transition is used to scatter
photons, which is followed by a second microwave m-pulse to transfer this path back into F' = 3,
mp = 3. When we compensate for the phase shift due to the double microwave transfer, the
fringe contrast decreases when scattering photons from the path in mp = 3, as shown in Fig
la. In Fig. 1b we did not compensate for the phase due to the double microwave transfer. In
this case, the path in mp = 3 is phase shifted by 7 relatively to the other paths. As shown in
Fig. 1b, the fringe contrast increases, when scattering photons off this path. For longer pulse
lengths, the fringe signal with and without a m-phase shift of the path in mp = 3 is very similar,
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Figure 1: (a) Interference spectra for a spacing T = 60 ps between the Ramsey interactions as a
function of the phase of the second Ramsey pulse. The solid line was recorded without scattering of
photons. The dashed line with reduced contrast was measured with an applied 9 s long optical pulse
scattering photons off the mp = 3 path. (b) Interference spectra with an additional phase shift of
7 applied to the path in mp = 3. Without scattering of photons, the fringe signal exhibits a small
contrast (solid). When scattering photons, the interference contrast increases (dashed line).

which is an indication for the reduced information of the mixed quantum state. Fig. 2 shows
the measured fringe contrast for different degrees of decoherence within the interferometer. The
results are in agreement with quantum mechanical calculations and suggest that in multiple
beam interference a single fringe contrast is not sufficient to quantify decoherence.
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Figure 2: Michelson fringe contrast ¢ = (I,az — Imin )/ (Imaz + Imin) of multiple beam interference sig-
nals for different interaction times with the decoherence laser. Without any additional phase (squares)
the fringe contrast decreases with increased pulse length. With a = phase shift in the mp = 3 path
(crosses) the contrast increases for larger pulse lengths.
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