The muon anomalous magnetic moment

Vernon W. Hughes on behalf of the Muon g-2 Collaboration*

Yale University, 06520-8120, New Haven, CT USA

The experiment at Brookhaven National Laboratory to make a precise measurement of the muon anomalous g value, $a_{\mu}=(g-2)/2$, has obtained extensive new data in the past 1 1/4 year since the report [1] of its first result $a_{\mu^+}=1$ 165 925(15) \times 10⁻⁹ (13 ppm), obtained with pion injection into the muon storage ring. The new data have used muon injection which provided an increase to about 4000 stored muons per injection pulse and a large reduction in background. In addition, major improvements in the magnetic field of the storage ring, in detector efficiency, and in beam tuning were achieved. Greater than 2×10^9 e^+ from μ^+ decays were recorded, which implies a statistical error in a_{μ} of 1 ppm. The overall systematic error is expected to be at the 1 ppm level. Analysis of about 4 % of the new data provides the preliminary value $a_{\mu^+}=1$ 165 919(6) \times 10⁻⁹ (5 ppm) in which the error is dominantly statistical. Combining the measured values from CERN [2] and BNL [1] we obtain $a_{\mu}(\exp t)=11$ 659 208(46) \times 10⁻¹⁰ (3.9 ppm), which is in agreement with the latest theoretical value [3] $a_{\mu}(\text{theor})=116$ 591 628(77) \times 10⁻¹¹ (0.66 ppm). Analysis of the bulk of our new data is in progress, and a more precise value of a_{μ^+} may be available at the ICAP meeting.

- [1] Muon g 2 Collaboration, R.M. Carey, et al., Phys. Rev. Lett. 82, 1632 (1999).
- [2] J. Bailey, et al., Nucl. Phys. B, 150, 1 (1979).
- [3] V.W. Hughes, and T. Kinoshita, Rev. Mod. Phys. 71, S133 (1999).

^{*}H.N. Brown¹, G. Bunce¹, R.M. Carey², P. Cushman³, G.T. Danby¹, P.T. Debevec⁴, H. Deng⁵, W. Deninger⁴, S.K. Dhawan⁵, V.P. Druzhinin⁶, L. Duong³, W. Earle², E. Efstathiadis², F.J.M. Farley⁵, G.V. Fedotovich⁶, S. Giron³, F. Gray⁴, M. Grosse Perdekamp⁵, A. Grossmann⁷, E.S. Hazen², D.W. Hertzog⁴, V.W. Hughes⁵, M. Iwasaki⁸, K. Jungmann⁷, D. Kawall⁹, M. Kawamura⁸, B.I. Khazin⁶, J. Kindem³, F. Krienen², R. Larsen¹, Y.Y. Lee¹, I. Logashenko², R. McNabb³, W. Meng¹, J-L Mi¹, J.P. Miller², W.M. Morse¹, C. Onderwater⁴, Y. Orlov¹⁰, C. Ozben¹, C. Pai¹, J. Paley², C. Polly⁴, J. Pretz⁵, R. Prigl¹, G. zu Putlitz⁷, S.I. Redin⁵, O. Rind², B.L. Roberts², N.M. Ryskulov⁶, S. Sedykh⁴, Y. Semertzidis¹, Yu.M. Shatunov⁶, E. Sichtermann⁵, E. Solodov⁶, A. Steinmetz⁵, L.R. Sulak², C. Timmermans³, A. Trofimov², D. Urner⁴, D. Winn¹¹, A. Yamamoto⁹, and D. Zimmermann³

¹Brookhaven National Laboratory ²Boston University ³University of Minnesota ⁴University of Illinois ⁵Yale University ⁶Budker Institute of Nuclear Physics, Novosibirsk ⁷University of Heidelberg ⁸Tokyo Insitute of Technology ⁹KEK ¹⁰Cornell University ¹¹Fairfield University