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involve no absurdity and create no confusion of
ideas.”

He saw in the workings of nature confirmation
of his ideas. Were not people black in hot
climates and white in cold ones? The black skin
of the Negro allowed him to radiate efhciently
and thereby keep cool, while white skin was an
efficient reflector of frigorific radiation and hence
defended the white man from the cold. Rumford
was so sure of his conclusions that he carried his
convictions to the logical conclusion of always
wearing white clothing in cold weather, much to
the derisive amusement of the Parisian society
in which he moved in later years.

Rumford had no concept of heat as a random
motion. He felt that heat was primarily set up
by the harmonic vibrations of the “fibers of the
metal,””® was transmitted through solids and
radiated from them in the same manner as
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acoustic waves. He did not feel that these same
waves could be set up in fluids. In fact, he carried
out a long series of experiments® showing that
gases and liquids (including mercury!) were
perfect nonconductors and that their only mode
of communicating heat was by convection.® He
felt that what heat was transmitted through
fluids at rest was due only to the conduction of
thermal vibrations in the all-pervading ether,
and he was strengthened in this belief by his
showing that heat passed almost as easily
through a Torricellian vacuum as through air.!?
By 1800 he was completely convinced that heat
was a vibratory motion, analogous in every way
to acoustical oscillations.

8 Count Rumford, Essay VII, Part II, Cadel and Davies,
London, 1798.
9S. C. Brown, Am. J. Phys. 15, 273 (1947).
( ;" C)ount Rumford, Trans. Roy. Soc. (London) 76, 273
1786).
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The equations of motion of the Foucault pendulum are set up in polar coordinates. The
oscillation is shown to be simple harmonic for a particular angular velocity, — sing, where
2 is the angular velocity of rotation of the earth and ¢ is the latitude. In general, the motion
involves a constant areal velocity ¢ and a nonlinear oscillation given by #+ w? —¢2/r*=(. This
equation is integrated through the energy equation and shown to give the same precession as

in the harmonic case.

OUCAULT'S great pendulum of 1851, swing-
ing under the dome of the Panthéon in Paris,
gave a dramatic proof of the rotation of the
earth. The slow precession of the plane of oscilla-
tion of a freely suspended pendulum is still
followed with interest, when the experiment is
repeated in observatories and science museums
throughout the world, and many elementary
physics textbooks discuss the phenomenon as a
Iaboratory demonstration of the earth’s rotation.
As has been pointed out recently,! it is not correct
to say simply that the pendulum continues to
swing in a fixed plane or that the horizontal path
of the bob maintains a fixed direction in space.
It is quite possible to give a reasoned geometrical

1 Wylie, Pop. Astron. 57, 170 (1949).

explanation® of the observed precession of the
plane of oscillation, but this is cumbersome and
rarely done.

The more advanced books offer a variety of
treatments of the Foucault pendulum. With the
traditional method of starting the oscillations,
by burning a string which holds the bob out from
the equilibrium position, the motion should
follow a pointed-star pattern as described in a
detailed derivation® of the special cases by Kim-
ball in this journal. The author points out that,
in practice, his different patterns are indis-
tinguishable and amount to a simple harmonic
motion in a slowly rotating plane. A complete

2 Grimsehl, 4 Textbook of Physics (Blackie & Son
Limited, London and Glasgow, 1932), Vol. 1, p. 165.
3W. S. Kimball, Am. J. Phys. 13, 271 (1945).
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development! from the differential equations of
the spherical pendulum shows the dependence
on the initial conditions. This derivation, a con-
cise vector treatment? and a development in
complex quantities® have in common the in-
troduction of a rotation of the reference axes to
compensate for the rotation of the earth. There
follows an alternate direct treatment of this
historic and important example of motion on a
rotating earth, quite within the reach of students
of intermediate mechanics.

THE CORIOLIS FORCE

By the theorem of Coriolis (1829), motion
relative to moving axes can be treated by the
ordinary equations of motion by the addition, to
the actual forces, of fictitious forces capable of
producing accelerations equal and opposite to
the acceleration of moving space and the com-
pound centripetal acceleration. This is, of course,
an application of the principle, introduced by
d’Alembert in his Traité de Dynamique (1743),
that the system of external forces is, as a whole,
in dynamic equilibrium with the inertial reac-
tions of the accelerated masses. For the dynamics
of a particle, d’Alembert’s principle is implicit
in Newton's second law (1687) and the theorem
of Coriolis involves only the kinematics of
relative motion. A modern derivation can be
found in any standard textbook.

For an observer on the uniformly rotating
earth, the first fictitious force reduces to the
ordinary centrifugal force of elementary me-
chanics. It is constant at a given station and is
included in the resultant gravitational force,
the weight of the body. The second, the Coriolis
or deflecting force, depends on the latitude and
the velocity of the body; it is familiar to many
physics students through its dominant role in
the calculation of the geostrophic wind velocity
in meteorology. For motion in a horizontal plane,
the horizontal component of the Coriolis force
is at right angles to the wvelocity v of the body
and has a magnitude 2mvQsing where, for a

* Webster, The Dynamics of Particles and of Rigid, Elastic,
and Fluid Bodies (B. G. Teubner, Leipzig, Germany, 1904),
P 531%i§e, Introduction to Theoretical Physics (D. Van
Nostrand and Company, Inc., New York, 1935), second
edition, p. 107.

8 Joos, Theoretical Physics (Blackie & Son Limited,
London and Glasgow, 1951), second edition, p. 814,
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latitude ¢, Q sing is the vertical component of the
angular velocity of the earth.

THE EQUATIONS OF MOTION

With a long suspension and a small maximum
displacement from the equilibrium position, the
motion of a pendulum bob is effectively in the
horizontal plane. The simple pendulum of mass
m, length [, and small amplitude of oscillation is
assumed to execute simple harmonic motion
under the influence of a restoring force, mgr/l,
proportional to the displacement 7. As this ap-
proximation is always introduced sooner or later,
we shall distinguish the Foucault pendulum
proper from the spherical pendulum by postula-
ting its validity in what follows.

Using polar coordinates for the position of the
pendulum bob in the horizontal plane, we have
at any point radial and transverse velocities,
# and 78, and the corresponding accelerations,
F—r@ and r6+2+4. With the inclusion of the
Coriolis forces, the equations of motion are

m(F—r6?) = —mgr/l+ 2mrQ sing 6h)]
and
m(rf+270) = —2miQ sing. 2)

THE HARMONIC OSCILLATOR
The equations of motion reduce to

F4r(g/l— 62— 26Q sing) =0 (3)
and

r8-+27(6-+Q sing) =0. 4

Equation (4) is satisfied by a constant angular
velocity, —Qsing, of the pendulum bob since
6+Q sing =0 gives §=0. Substituting this value
for 6 in Eq. (3), we get

F+wir =0, (5)
where w?=g/l+Q sin%. This represents a simple
harmonic motion along a radius vector with a
period T given by

T =2x(g/1+ sin’p)—t. (6)

For motion from a maximum displacement A4
at an angle 0y, the complete solution is given by

r=A cos(g/l+Q sin’p) ¥ )
and
0= 00— sineg. (8)
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THE NONLINEAR OSCILLATOR

In general, the solution of Eq. (4) is of the
form

r2(§+Q sing) =c, (9)

where ¢ is a constant areal velocity. (This is
not the rate at which the radius vector sweeps
out area, which is simply %r24.) Substituting
from Eq. (9) into Eq. (3), we get the equation of
a nonlinear oscillator,

Ftwir—c2/rt=0. (10)

This is not one of the common nonlinear differ-
ential equations, but it is of interest to apply to
it some of the more recently developed techniques
for the solution of such equations.” Fortunately,
in the present case, we can turn to the energy
equation as a first integral of the equation of
motion and can integrate it in terms of a new
variable.

Since the Coriolis force is at right angles to the
velocity and does no work, the energy equation
is simply

L (#2-4-r26%) +Lmgr?/l = constant.

(11)

At the maximum displacement A, the radial
velocity # is zero and we can substitute from
Eq. (9) and evaluate the constant. We find

7"2+w27’2+62/72=w2B2, (12)

where B?=A?4c?/w?42. This equation can be
written in terms of a new variable z, where
z=7? and Z=2r7, and becomes

2= — 4?40 Bz — 402, (13)
This can be integrated and gives the solution of

7 See, for example, Schelkunoff, Quart. Appl. Math. 3,
348 (1945).
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the nonlinear equation as
r?=1B2+1C? cosut,

where C?=A42~— /w242

(14)

THE PRECESSION OF THE PENDULUM

The angular velocity —Qsing required for
harmonic oscillation along the radius vector is
small. It is sometimes argued® that the bob may
well acquire this angular velocity in starting from
the rest position. That this is not the explanation
of the regularly observed precession is seen by
reflecting that a masking angular velocity ¢/A42
is equally probable. The student must consider
the effect of an arbitrary areal velocity ¢ on the
pendulum motion. Substituting from Eq. (14)
in Eq. (9), we have

6=2c/(B+ C? cos2wt) — sing. (15)

This is integrable and, writing A6 for the angle
turned through in one complete oscillation of the
pendulum, we have

Ab= —QT sing. {16)

Thus, the precession of the pendulum is shown
to be —Qsing in the anharmonic as in the
harmonic case.

The general solution of the equations of
motion enables us to calculate the position of
the pendulum bob for any given initial conditions.
In particular, from Eq. (14), we obtain the
minimum displacement from the equilibrium
position as ¢/wA. This gives at once the simple
condition, ¢=0, that the bob pass through the
equilibrium position. From Eq. (9), we see that
under no condition can the Kepler law of equal
areas be obeyed.

Erratum: Quantitative Evaluation of Rocket Propellants

S. S. PENNER
Guggenheim Jet Propulsion Center, California Institute of Technology, Pasadena, California
[Am. J. Phys. 20, 26 (1952)]

EQUATION (12) should read

*=1/N(RT./sM*)*.

(12)



