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Notes on the (two-)Weyl Fermi arcs

1 Notations

Let us consider the Bloch hamiltonian H,

[ —ids h— 0
H‘“(m@ 0, ) ’ (L.
where ) ,
—i0)? — k
p o L= ;)k?o ol (1.2)

The parameters v and £y have respectively the dimensions of a velocity and of a momentum,
so that the eigenvalues of H represent energy values. (In our notation, i = 1 = ¢.) In R3, the
hamiltonian commutes with the components of the momentum, so one can put

Up(x) = e x(p) - (1.3)
One finds
HX(p) = v (h(plf L, 2) x(P) | (1.4)
with
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Therefore the eigenvalues of the hamiltonian are given by

Hu(p) = E(p)u(p) . Hu(p)=—E(p)v(p) (1.6)
with
E(p) = ve(p) Zv\/hz(p1)+p§+p§, (1.7)
and the corresponding normalised “eigenspinors” take the form
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where the normalization factor n(n) is given by

1
n(p) = : (1.9)
V2e(p)(e(p) + p3)
A direct computation shows that
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GEuP) =" wipup) =
% h —ips % € — D3
up(P)ur(p) = —- o u(Pua(p) = — (1.10)
and
X €—D3 X h +ips
vp)u(p) = —; o upe(p) = ——
* h — Zp? * €+ b3
v (P)up) = —— o va(p)ra(p) = — . (1.11)
So one finds
g (P)us(p) + v5(P)vs(P) = das - (1.12)
2 Boundary conditions in half space
We consider the manifold
M=R?*xR, , (2'2%2°) with 2*°>0. 2.1)
The boundary conditions so that H is hermitian,
(He|y) = (p|HY) (2.2)
for any state | ) and (p|, imply
o' (@) o® (x) | 5_, =0 (2.3)
Equation (2.3) is satisfied when each wave function ¢ (x) verifies
(0" cosy +0”sinn) v(@) | o, = (@), - (2.4)
where the parameter 0 < v < 27 characterises the boundary conditions. Since
_ (1 2 0 e™
o(v) = (o' cosy + o%siny) = <€iv E (2.5)
one finds
. 1 [e/?
c(w(y)=wly) , with w(y)= 7 ( /2 ) - (2.6)

The complete set of solutions of the constraint (2.4) is composed of two parts: the so-called
scattering states and the edge states.



2.1 Scattering states

The wave functions of the scattering states have the form

o) (@) = e/ P2 ) gy (p) py —p3) + S (p)eP® u(p) 2.7)
and
; 1 2 3 .
¢S () = W1 TR gy (py py —ps) + S_(p)eP v (p) (2.8)
where px = p1at + pox?® + pyx®, with p; > 0. They verify
¢ (z) = E(p) o7 (x) . Hol)(z) =—E(p) o) (). (2.9)

One can imagine that Sy (p) are the scattering transition amplitudes (or the element of the
scattering matrix) for particles, with incoming momentum (p1, p2, —ps3), which are scattered on
the plane 3 = 0 and have final momentum p = (py, p2, p3). The boundary condition (2.4)
means

u(p1, p2, —p3) + S1(p) u(p) x w(y) ,  v(p1,p2, —p3) +S_(p)v(p) xw(y). (2.10)

One finds s
— Y (h ;
S, (p) = [5+p3} €+p3+6_¢ ( +.2p2) 2.1
€ — p3 e+ ps— e (h+ipy)
1/2 - .
€+ p3 e —ps+e7(h—ips)
S_ = — - . 2.12
Note that
|S:<(p)| =1, (2.13)
and
Si(p) = S«(p1,p2, —ps) - (2.14)

2.2 Complex poles of the scattering matrix

The amplitudes Sy shown in equations (2.11) and(2.12) have poles in the complex ps-plane. In
particular S, (p) has a pole when

p3 = p3 =1 [pa cosy — h(py)siny] , (2.15)
and
h(p1) cos~y + pg siny >0 . (2.16)
In this case, one has
£(p1,p2,p3) = h(p1) cosy + py siny . (2.17)

On the other hand, S_(p) has a pole when

p3 = D3 =1 [pa cosy — h(p1)siny] , (2.18)

and
[A(p1) cosy 4 pa siny] <0. (2.19)
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In this case, one has
e(pr1, P2, p3) = — [M(p1) cosy + pa siny] . (2.20)

In order to determine the residues of the amplitudes which are associated to the previous
poles, let us put
p32j53+6. (221)

Then '
h(p1) cosy + pa siny

R. =lim ¢S, (p) = 275 . (2.22)

Similarly, in the case of S_ one gets

R_=limeS_(p) = h(p1) cosy + py sinvy

P N

It is useful to compute the value of the spinors u(p) and v(p) when p3 = ps.
At the pole of S (p), one finds

275 (2.23)

_h4ipy h +ipy

h cosy + pysin~y

w(y), (2.24)

ulp
( )ps=ﬁs (pl,PQ,P?,

and at the pole of S_(p) one gets

B —h + ips \/ — ip2

v(p) w(~) . (2.25)

P3=P3 N (p1 y P2, p3 h cos~y + posiny

3 Completeness relations

In order to recover the completeness relations, let us consider the integral

! dgp .
I = / e (0 W); (07 (@), - 3.
where the integral on the momenta is restricted by ps > 0. Let us define
p= (p1,p2, —p3) - 3.2)
Then
" d3p . 4 . ,
19 = [ S ®)+ st )] [ @) + 5. ) o)
" d3p NN o
[ G e B 6)+ 51 @S, () e ) )

+8, (p)e VP (B)ua(p) + si(p)e*ipyeiﬁwu;(p)ua@)} . (3.3)



Since S% (p)S4(p) = 1, one finds

/ (;iﬂ.;[;g {efiﬁyeiﬁwug(ﬁ)ua(ﬁ) + Si(p)S+(p)eiipyeipmuz(p)ua(p)} _

&p
= / (27f;3 PV (p)ua(p) | (34)

where the last integral in d®p is performed in all space, without constraints. Similarly, because
of the identity (2.14),

St(p) = S (p1,p2,p3) = S+ (p1, D2, —D3) (3.5)
one has
/—d3p —ipY LIDT ) K (2 * —ipy ipx, * A~
(2ﬁ)3{5+(p)e P (B)ua(p) + S (p)e Ve P (p)ua(P) | =
d3p i (:1:17 1)+i (127 2) i (mSJr 3) PR
:/_<27r)3ep1 Y P2 Y ePS Yy S+(p) uﬁ(p)“a(p) . (36)

In the computation of the integral [ dps, one has to note that since 2* > 0 and y* > 0, one
can integrate on a large semi-circle on the upper half-plane of the complex p3-plane. By means
of the residue theorem, one then gets

[ e et 0 () B ) = G3.7)

(2m)3 T TR e
2
- / T e (@ =y ) ipe(et—y®) o= lp2 COSV_hSi“ﬂ(”C3+y3)2[P2 cosy — hsiny] x
(2r)?
Xwj(y) wa(y) O(pz cosy — hsiny > 0) O(hcosy + pysiny > 0) .

Let the wave function of the edge states with positive energy be

Ci(’JF) (IE) = \/2[])2 Ccosy — h sin fy] ei(plmlerQ;c?) e*mg[pz cosy—hsin] w(’)/) %
X O(pycosy — hsiny > 0) O(hcosy + pasiny > 0) . (3.8)
Then,
b d’p '
Jr P (3 r— * + +
1= / (2r)? P (p)ua(p) - / 27)? W], [GP@)], . 3G9

Let us now consider

10 = [ S i)+ 5 ) ™ 0)] [P ) + - (p)e o)

' o -
B / G Le PP (B)oa(B) + 57 (B)S- (PP (p)va(p)
ES-(p)e PP (Bua(p) + 51 (D) PP (DI (B) . (B10)
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As before, one gets

/ (gﬁfig{eiﬁyeiﬁ%g(ﬁ)va(ﬁ) + 5% (p)S_ (p)e*ipyeip%;(p)va(p)} _
Z/%e“’(‘”‘y)v;(p)va(p) . 3.11)

One also has

// (;;1;3{5(p)eiﬁyeimv;(ﬁ)va(p) + Si(p)eiipyeiﬁmvg(p)va(ﬁ)} =

d3 ; 1 1 . 2 2 . R
— / (275;3 eip1 (! —y!)+ipa (2®—y )GZPS(xS-l-yS)S_(p) vg(p)va(p) ) (3.12)

By integrating on a large semi-circle in the complex ps-plane, one finds

d3 4 . 4 R
/ <27f§3 M VRS (p) o) (B)va(p) = (3.13)

2
_ _/ (;j 1;2 eipl(xl—yl)—l—ipz(mQ—y2)e—[p2 Cosv—hsinﬂ(mg—i—yg)Q[pQ cosy — hsin ’7] %
™
Xwj(y) wa(y) O(pz cosy — hsiny > 0) O(hcosy + pysiny <0) .

Let the wave function of the edge states with negative energy be

(@) = v/2pacosy — hsina] el e sl -hainal ()
X O(pgcosy — hsiny > 0) O(hcosy + pasiny <0) . (3.14)

Then,
dp d? *
1= [ e imunm - [ GE L@, 6
Finally, by taking the sum of equations (3.9) and (3.15) one derives
! d3 * _ * _
[ e {5 @, 6 @), + (65 )] (6 @), }

e ) o 3
+/ (27:;2 {K’(’ﬂ(y)}ﬁ (7 @), + [ W], [6 )(fv)}a} = 5,583z — y) . (3.16)

This equation shows that the wave functions represent a complete set of states.

4 Summary of the one-particle wave functions

Scattering states:

o) (@) = /P2 ) gy (p) py —pa) 4+ S (p)eP® u(p) 4.1)



and

QZ);;_) (:IZ) = ei(p1x1+p2x2—p3$3) U(plapZa _p3) + S (p)eipw U(p) ) (42)
with
H ) (@) = v\ h2(p1) + p} + p 641 () 4.3)
H o) (@) = —oy/h2(p1) + 03 + P36l (@) (4.4)
Edge states:
Cp(w> _ \/2[]?2 cosy — hsin ,Y] ei(pllermeQ) ef;ps[pQ cos y—hsin~] w(,ﬂ %
X O(py cosy — hsiny > 0) , 4.5)
and
H (p(x) = v(hcosy + pesiny) (p(x) . (4.6)
5 Regions
The function 2 2
b1 — Ry
h=nh =
(p1) 2ko
is shown in Figure 1, and the value of h satisfies
k
—30 <h<+4+0.
h
0
_k\/ko pl
—ko/2 ----
Figure 1

The region of the (p, h)-plane which is defined by the condition (existence of the bound edge
states)
G2 = ¢2(p1,p2) = pacosy — h(p)siny > 0 (5.1)



corresponds to the union of the two shaded regions which are shown in Figure 2, where it is
assumed that 0 < vy < 7/2. The dotted (unlimited) region containing a plus sign (+) is defined
by the constraint (5.1) and by the additional constraint (positive energy)

@1 = q1(p1,p2) = h(p1) cosy + pasiny > 0. (5.2)

Whereas the (limited) region with pattern vertical lines, and congaing a minus sign (—), is
defined by the constraint (5.1) and by the additional constraint (negative energy)

¢1 =hcosy+ pesiny < 0. (5.3)

Figure 2

6 Fermi arcs
Let us concentrate on the edge states with vanishing energy.

6.1 (y=0)
When v = 0, the vanishing value of the energy implies i (p;) = 0 and then

p1 = Tko . 6.1)

The value of p, must be positive, but it can assume arbitrary values, as shown in Figure 3.



D2

—Ko ko D1

Figure 3. (v = 0)

62 O<y<7/2)

When 0 < v < m/2, the zero energy constraint gives

h(p1) = —patan-y , (6.2)
which implies
k‘2 2
Dy = O% PL oty . (6.3)
0

The existence of the boundary states condition reads

— >0
sin 7y

—hcoty cosy — hsiny = —h , (6.4)

which implies A < 0. Therefore, it must be —ky < p; < ko, and the corresponding Fermi arc is
shown in Figure 4.

D2

—k’o ko D1

Figure 4. (0 < v < 7/2)

63 (y=17/2)

When v = 7/2, the existence of edge states implies h(pl) < 0 and then —ky < p; < kg. The
vanishing condition for the energy requires p, = 0. The Fermi arc is shown in Figure 5.
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Figure 5. (y = 7/2)

64 (r/2<~<m)

When 7/2 < v < , one has
cosy=—cos(m—7) <0 , siny=sin(r—v)>0.
The existence of edge states gives the constraint

sin(m —v)  k§ — i

pe < —h(p1) e e T tan(m — ) . (6.5)
On the other hand, the zero energy condition reads
pr = 1) ST = B (). 6
Therefore, the resulting Fermi arc is shown in Figure 6.
b2
—ko 0 ko
P1

Figure 6. (/2 < v < )

6.5 (v=r1)
When = 7, the condition for the existence of edge states is given by
—p2 >0, (6.7)
and the zero energy constraint gives
—h(p1) =0 — p1==Fko . (6.8)
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The associated Fermi arc is shown in Figure 7.
D2
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Figure 7. (v = m)

6.6 (—7mT<vy<-—-7/2)

When —7 < v < —7/2, both cos -y and sin y assume negative values. The zero energy condi-

tion gives
cosy ki —picosy

=—h = .
b2 (1) sin y 2ky  sinvy
On the other hand, the existence of the edge states requires

2

Pocosy — hsiny = —hC(?S T hsiny >0,
sin 7y
which implies
h(pl) Z 0 )
and then p; < —kgy or p; > k. The resulting Fermi arc is shown in Figure 8.
P2
—ko 0 ko

y41

Figure 8. (—m <y < —m/2)

6.7 (v=-7/2)

When v = —7/2, the zero energy condition gives

p2:07

11

(6.9)

(6.10)

(6.11)

(6.12)



whereas the constraint due to the existence of edge states reads
h(p1) 20, (6.13)
which implies that p; < —kg or p; > ko. In this case, the Fermi arc is shown in Figure 9.

D2

—]{30 ko n

Figure 9. (v = —7/2)

68 (—71/2<v<0)

When —7/2 < v < 0, one has cosy > 0 and siny = —|sin~y| < 0. The zero energy condition
leads to cos
p2=hp1)— . (6.14)
| sin |

The existence of edge states condition states

2 h
o8 T + h|siny| =

- - >0, (6.15)
[sinn [sin7
which implies p; > kg and p; < —kq. So the corresponding Fermi arc is shown in Figure 10.

D2

—I'C() k}o D1

Figure 10. (—7/2 < v < 0)
In what follows we shall consider the case in which

0<y<m.
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