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Abstract

The thermodynamic properties of superconducting electrons are usually studied by

means of the quasi-particles distribution; but in this approach, the ground state energy and

the dependence of the chemical potential on the electron density cannot be determined. In

order to solve these problems, the thermodynamic potentials are derived by means of the

Bogoliubov-Valatin formalism. The thermodynamic potentials can be obtained by comput-

ing the free energy of a gas of quasi-particles, whose energy spectrum is conditional on the

gap function. However, the nontrivial dependence of the gap on the temperature jeopar-

dises the validity of the standard thermodynamic relations. In this article it is shown how

the thermodynamic consistency (i.e. the validity of the Maxwell relations) is recovered,

and the correction terms to the quasi-particles potentials are computed. It is shown that the

Bogoliubov-Valatin transformation avoids the problem of the thermodynamic consistency

of the quasi-particle approach; in facts, the correct identification of the variables, which

are associated with the quasi-particles, leads to a precise calculation of the quasi-particles

vacuum energy and of the dependence of the chemical potential on the electron density.

The stationarity condition for the grand potential coincides with the gap equation, which

guarantees the thermodynamic consistency. The expressions of various thermodynamic po-

tentials, as functions of the (T, V,N) variables, are produced in the low temperature limit;

as a final check, a rederivation of the condensation energy is presented.

1 Introduction

The Bogoliubov transformation is one of the main discoveries in mathematical physics. In this
article it is shown how to compute the thermodynamic potentials —functions of the (T, V,N)
variables— in superconductivity by means of the Bogoliubov transformation. It is demonstrated
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that the Bogoliubov transformation avoids the problem of the thermodynamic consistency of the
quasi-particle approach. The quasi-particles vacuum energy and the dependence of the chemical
potential on the electron density are derived.

In the low temperature limit, the thermodynamic behaviour of any macroscopic physical
system is determined by the structure of the energy levels of the system which belong to a

neighbourhood of the ground state energy. The experimental data show that, usually, these
energy levels are organized in such a way that one can give a quite good description of their
thermodynamic properties by means of a gas of quasi-particles [1, 2]. The energy spectrum of

a single quasi-particle is specified by its dispersion relation, which is determined by the nature
of the interactions among the “atoms” or the “elementary constituents” of the system.

Let us consider the framework in which the gas of quasi-particles describes the thermal fluc-
tuations of the system above its ground state. In this formalism, the number of quasi-particles
is not conserved —in facts it vanishes at zero temperature— and therefore the quasi-particles

chemical potential is zero. Even if the system is composed of strongly interacting atoms —like
in a quantum liquid— the quasi-particles are weakly interacting, and then one can determine,
with a good approximation, the thermodynamic potentials of the system. Indeed, in the low tem-

perature limit the density of quasi-particles becomes very low, so that their mutual interactions
produce minor effects. Thus a crucial part of the information on the thermal properties of the

whole system is mainly contained in the form of the dispersion relation of a single quasi-particle.
Let ε(p) be the energy of a single quasi-particle in the state labelled by the value p of the mo-
mentum. The function ε(p) can be a rather complicated function of the momentum, which can

be determined by the experimental data, or it can be deduced —in some approximated form—
from the hamiltonian of the system. In superconductors, for instance, the dispersion relation for
a single quasi-particle [3, 4] assumes the form

ε(p) ≃
[(
p
2/2m− µ

)2
+∆2

p

]1/2
, (1.1)

where µ denotes the chemical potential for the electrons. The gap function ∆p can be different
from zero in a neighbourhood of the surface of the Fermi sphere and satisfies

∆p =

⎧
⎨

⎩

∆(T ) when |p2/2m− µ| ≤ δE ≃ !ωD ;

0 otherwise;
(1.2)

in which ωD indicates the Debye frequency of the ions lattice. The gap ∆(T ) is not vanishing
when the temperature T takes values below the critical value Tc, and ∆(T ) = 0 for T ≥ Tc.
As a result, the energy ε of a single quasi-particle nontrivially depends on the temperature, ε =
ε(p, T ). But when the dispersion relation ε(p, T ) nontrivially depends on the temperature, the
standard expressions of the thermodynamic potentials —derived in statistical mechanics— for
a gas of weakly interacting constituents do not satisfy the thermodynamic relations (or Maxwell

relations).
More precisely, if A represents a standard thermodynamic potential which is computed in

statistical mechanics when the atomic energy ε0(p) does not depend on the temperature, let us
denote by Aq the corresponding potential for the gas of quasi-particles which is obtained from
A by means of the substitution ε0(p) → ε(p, T ). For instance, the free energy Fq and the
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internal energy Uq of a gas of noninteracting quasi-particles with energy ε(p, T ), satisfying the
Fermi-Dirac statistics, are given by

Fq(T, V ) = −
kTV g

h3

∫
d3p ln

(
1 + e−ε(p,T )/kT

)
, (1.3)

and
Uq(T, V ) =

V g

h3

∫
d3p

ε(p, T )

eε(p,T )/kT + 1
, (1.4)

where g denotes the spin degeneration factor. When the thermodynamic relations are satisfied,

the entropy S is given by S = −∂F (T, V )/∂T ; and since F = U − TS, one has U = F −
T (∂F/∂T ). However, if [∂ε(p, T )/∂T ] ̸= 0, one finds

Uq ̸= Fq − T

(
∂Fq

∂T

)

V

, (1.5)

and therefore expressions (1.3) and (1.4) do not satisfy the thermodynamic relations.
In addition to their agreement with experiments, the thermodynamic relations codify to

some extent the laws of thermodynamics and are necessary for the sake of logic. The require-

ment of validity of the thermodynamic relations will be called the thermodynamic consistency.
The thermodynamic consistency implies that, in general, the thermodynamic potentials of the

macroscopic systems cannot be exactly equal to the potentials Aq of the quasi-particles. The
presence of adjusting terms δAq is needed in order to rectify the Aq expressions and make the
final combinations Aq+ δAq correct. As far as the computation of δAq is concerned, the knowl-

edge of the quasi-particles distribution is of no help, because δAq is essentially determined by
the quasi-particles vacuum energy.

One of the purposes of the present article is to produce the correction terms to the quasi-
particles potentials in the case of superconductivity by means of the Bololiubov-Valatin formal-
ism. It is shown that the accurate determination of the quasi-particles vacuum energy completes

the construction of the thermodynamic potentials satisfying the Maxwell relations. It is verified
that, in agreement with the Landau principle, the value of the gap corresponds to a stationary
point of the grand potential Ω(T, V, µ). Then the expressions of the thermodynamically con-

sistent potentials as functions of the (T, V,N) variables are obtained, and how the chemical
potential is related with the electron density is determined. As a final check, a derivation of the

superconducting condensation energy from Ω(T, V, µ) is presented.
The thermodynamic consistency in the presence of nontrivial medium-dependent dispersion

relation has been considered for instance by Shanenko, Yujalova and Yukalov [5, 6] in the case

of clustering matter, and by Gorenstein and Yang [7] in the case of a gluon plasma. This issue
has been elaborated also in [8, 9, 10, 11, 12]. The Landau principle, which can be interpreted as
an equilibrium condition for ordinary thermal states, implies the thermodynamic consistency.

It as been argued [12] that, conversely, the validity of the thermodynamic consistency does not
necessarily imply the Landau principle. The results for the superconducting electrons are in

agreement with the analysis of Ref.[7].
In superconductivity, the dependence of the thermodynamic potentials on the statistical

mean value N of the number of electrons is a rather nontrivial issue because, when T < Tc, the

U(1) symmetry which is related to the number of electrons in superconductors is broken [3, 4].
The solution to this problem which is presented in the following chapters and the outcomes
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of the computed thermodynamic potential Ω(T, V, µ) are in agreement with the known results
[3, 4, 13, 14] on superconductivity. In the present work it is shown that the identification of the
variables which are associated with the quasi-particles leads to a precise determination of the

quasi-particles vacuum energy. The method, which is presented here to solve this question, can
find applications also in the study of topological superconductivity and in the new developments

on the topological states of matter [15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
The basic concepts which are connected with the use of the quasi-particles distribution are

briefly recalled in Section 2. Starting from the BCS hamiltonian, in Section 3 the Bogoliubov-

Valatin formalism [25, 26] is used to determine the grand potentialΩ, according to the procedure
envisaged for instance by Rickayzen [27]. By means of a Bogoliubov transformation acting on

the creation and annihilation operators of the electron fluctuations around the Fermi sphere, the
full expression of Ω(T, V, µ) satisfying the Maxwell relations is obtained. The thermodynamic
consistency of the result is discussed in Section 4, where a new derivation of the gap equation is

described. In Section 5 the relation connecting the chemical potential with the electron density
is derived, and the consistent expressions of various thermodynamic potentials —functions of
the (T, V,N) variables— of the superconduting electrons are produced in the low temperature

limit.

2 Quasi-particles distribution

Let us briefly recall the basic notions which are related to the use of the quasi-particles for-
malism. The description of the low temperature physics by means of quasi-particles represents

a phenomenological approach in which the dispersion relation of a single quasi-particle non-
trivially depends on the macroscopic variables of the material ε(p) = ε(p, T, µ, ...). Thus, in
addition to the temperature, the failure of the thermodynamic consistency for the quasi-particle

potentials Aq really concerns several state variables. In certain circumstances the dependence
of ε on these variables is weak enough so that, in a limited range of variability, one can assume

[28] that ε only depends on the momentum. But in general —and in particular when a phase
transition occurs— one cannot neglect the dependence of ε on the macroscopic variables; this
dependence will be denoted by ε = ε(p, T ).

As it has been suggested by Landau [2], a possible way to connect the thermodynamic
potentials of the system with the quasi-particles functions makes use of the quasi-particles dis-
tribution. The only thermodynamic potential whose absolute value is fixed —and cannot be

modified by any additive constant— is the entropy S,

S = k ln
{

number of microstates with fixed macro conditions
}
. (2.1)

Since the quantum states of the system are described (in the low temperature limit) precisely by
the gas of quasi-particles, the entropy of the system is equal to the entropy of the quasi-particles

gas. For noninteracting quasi-particles, the number of microstates in a given macrostate can be
determined by means of the distribution np of the quasi-particles. Indeed, in the quantum case
of Fermi statistics, the analogue of the Boltzmann H-functional is given [2] by

S = −
V gk

h3

∫
d3p [np lnnp + (1− np) ln(1− np)] . (2.2)
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Let us recall that, in the case of particles with vanishing chemical potential, the entropy repre-
sents the thermodynamic potential for the variables (U, V ). This means that, with fixed (U, V ),
the stable thermal state of the system corresponds to a maximum of S. Therefore the distribution

np can be determined by the requirement that, for fixed (U, V ), the variation of S with respect to
a generic fluctuation δnp must vanish. The associated (conditioned) variational principle takes

the form
δS

δnp

− λ
δU

δnp

= 0 , (2.3)

where the value of the Lagrange multiplier λ is given by λ = 1/T as a consequence of the
Maxwell relation TdS − dU − PdV = 0. Because of the explicit dependence (2.2) of S on V ,

there is no need to introduce a Lagrange multiplier for the volume. Since a modification of np

causes the following change in the energy

δU =
V g

h3

∫
d3p ε(p, T ) δnp , (2.4)

the solution of equation (2.3) is given precisely by the Fermi-Dirac distribution

np =
1

eε(p,T )/kT + 1
. (2.5)

By using equation (2.5) several variables can be computed. Unfortunately, the knowledge of
the distribution (2.5) —or of S(T, V )— alone is not enough to determine all the potentials; for
instance, the complete expressions of the free energy F and of the internal energy U cannot be

obtained from equation (2.5).

3 Computation of the grand potential

The low energy BCS hamiltonian [3] for conducting electrons in superconductor metals can be
written as

HBCS =
∑

p,s

p
2

2m
b†
p,sbp,s +

∑

p,q

Up,q b
†
p,+b

†
−p,−b−q,−bq,+ , (3.1)

where b†
p,s and bp,s denote the creation and annihilation operators for one electron in the state

|p, s⟩, where s = ± refers to the value of one component of the spin,

{bp,s , b†q,r} = δsr
h3

V
δ(p− q) ,

{bp,s , bq,r} = 0 = {b†
p,s , b

†
q,r} . (3.2)

The interaction kernel Up,q is related to the amplitude of the electron-electron scattering. Up,q

does not depend on the values of the electron thermodynamic variables, as the temperature
T , the volume V and the chemical potential µ. The main effects of the interactions between

electrons in the superconducting materials —which are relevant for the superconducting phase
transition— are found when |p2/2m− µ| ≤ !ωD and |q2/2m− µ| ≤ !ωD, and in this region
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Up,q can be approximated by −U0/V , where U0 is a positive constant. The grand partition
function Q, which is defined by

Q(T, V, µ) = Tr
[
e−HBCS/kT eNµ/kT

]
≡ Tr

[
e−H/kT

]
, (3.3)

can be interpreted as the partition function of a system with total hamiltonian

H =
∑

p,s

η(p) b†
p,sbp,s +

∑

p,q

Up,q b
†
p,+b

†
−p,−b−q,−bq,+ , (3.4)

in which the “effective” kinetic energy η(p) of one electron (where p = |p|) is given by

η(p) =
p
2

2m
− µ . (3.5)

Since the trace (3.3) cannot be evaluated exactly, one can introduce a self-consistent approxima-

tion (some kind of a mean field approximation) which permits to proceed with the computation.
In the grand canonical ensemble, let us introduce the statistical mean values

Xp = ⟨b−p,−bp,+⟩ , X∗
p
= ⟨b†p,+b

†
−p,−⟩ . (3.6)

In order to simplify the exposition, let us assume that X∗
p
= Xp (in facts, it turns out [3, 4, 13]

that one can always choose the phases of the creation and annihilation operators in such a way
that the mean values (3.6) are real). The couple of operators b†p,+b

†
−p,− and b−q,−bq,+ can be

written as the sum of their means values plus a fluctuation term,

b†p,+b
†
−p,− = Xp + (b†p,+b

†
−p,− −Xp) ,

b−q,−bq,+ = Xq + (b−q,−bq,+ −Xq) . (3.7)

Now one can assume [13, 27] that the effects of the fluctuations are sufficiently small so that,

inserting the identities (3.7) into the expression (3.4), the resulting term which is quadratic in
the fluctuations can be neglected. One then finds

H ≃
∑

p,s

η(p) b†
p,sbp,s −

∑

p

∆pXp +
∑

p

[
∆p b

†
p,+b

†
−p,− +∆p b−p,−bp,+

]
, (3.8)

where
∆p =

∑

q

Up,qXq . (3.9)

In order to recover the quasi-particles description of the low temperature behaviour of the sys-

tem, it is convenient to introduce new creation and annihilation operators. The corresponding
procedure is composed of two steps:

1. introduction of the operators d†
p,s and dp,s which create and annihilate quasi-particles in

the case of free electrons;

2. introduction of the operators a†
p,s and ap,s —which are obtained from d†

p,s and dp,s by
means of a Bogoliubov transformation— that diagonalize the hamiltonian (3.8).

6



STEP 1. The operators d†
p,s and dp,s should describe the one-particle fluctuations with respect

to the configuration of the Fermi sphere. Then d†
p,s and dp,s are chosen in such a way that their

vacuum state coincides with the free electrons ground state corresponding to the Fermi sphere.

In the T → 0 limit, the electron states with p = |p| < p0 are occupied whereas the states with
p = |p| > p0 are empty, where

p0 =
√

2mµ . (3.10)

Therefore d†
p,s and dp,s are defined [25] by

d†
p,s =

{
b−p,−s for p < p0 ;
b†
p,s for p > p0 ;

,

dp,s =

{
b†−p,−s for p < p0 ;
bp,s for p > p0 ,

(3.11)

The creation operator d†
p,s of a quasi-particle corresponds to the creation of a one-electron hole

in the Fermi sphere if |p| < p0, and the creation of a one-electron occupied state if |p| > p0.
As a result of the creation of a hole in the Fermi sphere, which corresponds to an electron state
with momentum −p and spin component −s, the total momentum of the system increases by

p and the total spin of the system increases by s. For this reason, when p < p0 the quantum
numbers of the operators d†

p,s and dp,s are opposite with respect to the quantum numbers of b†
p,s

and bp,s. The operators d†
p,s and dp,s satisfy the canonical anticommutation relations

{dp,s , d†q,r} = δsr
h3

V
δ(p− q) ,

{dp,s , dq,r} = 0 = {d†
p,s , d

†
q,r} . (3.12)

The operator number of quasi-particles N̂qp is given by N̂qp =
∑

p,s d
†
p,sdp,s; N̂qp counts the

number of holes inside the Fermi sphere plus the number of occupied states outside the Fermi
sphere. The number of quasi-particles is not conserved, thus quasi-particles have vanishing
chemical potential. In the T → 0 limit, the number of quasi-particles vanishes. By using the

relation dp,sd†p,s = 1− d†
p,sdp,s and the definition (3.11), one finds

∑

p,s

η(p) b†
p,sbp,s =

∑

p,s

w(p) d†
p,sdp,s + EF (V, µ) , (3.13)

in which

w(p) = |η(p)| =
∣∣∣∣
p
2

2m
− µ

∣∣∣∣ , (3.14)

and

EF (V, µ) = −
p<p0∑

p,s

w(p) = −2
p<p0∑

p

w(p)

= −
2V (2m)3/2

15π2!3
µ5/2 . (3.15)

The gas of quasi-particles, which are associated with the operators (3.11), can also be used
to compute the thermodynamic variables for a degenerate Fermi gas (as an alternative to the
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Sommerfeld expansion). Note that, differently from the effective kinetic energy η(p) of one
electron, the kinetic energy w(p) of one quasi-particle satisfies w(p) ≥ 0.

STEP 2. By using the operators d†
p,s and dp,s, the hamiltonian (3.8) reads

H ≃
∑

p,s

w(p) d†
p,sdp,s +

∑

p

[
∆p d

†
p,+d

†
−p,− +∆p d−p,−dp,+

]

+EF (V, µ)−
∑

p

∆pXp . (3.16)

Since d†p,−dp,− = 1− dp,−d
†
p,− , one can write

∑

p,s

w(p) d†
p,sdp,s =

∑

p

w(p)
[
d†p,+dp,+ − d−p,−d

†
−p,−

]
+
∑

p

w(p) . (3.17)

Thus the operator (3.16) can be written in the form

H ≃
∑

p

D†
p

(
w(p) ∆p

∆p −w(p)

)
Dp + EF (V, µ)−

∑

p

∆pXp +
∑

p

w(p) , (3.18)

where

Dp =

(
dp,+
d†−p,−

)
, D†

p
=

(
d†p,+ , d−p,−

)
. (3.19)

By means of the diagonalising matrix Mp ∈ SU(2) that satisfies the relation

M †
p

(
w(p) ∆p

∆p −w(p)

)
Mp =

(
ε(p) 0
0 −ε(p)

)
, (3.20)

in which

ε(p) =
√

w2(p) +∆2
p
, (3.21)

one can introduce new creation and annihilation operators a†
p,s and ap,s according to

(
ap,+
a†−p,−

)
= M †

p
·Dp ,

(
a†p,+ , a−p,−

)
= D†

p
·Mp . (3.22)

One then obtains

∑

p

D†
p

(
w(p) ∆p

∆p −w(p)

)
Dp =

∑

p

ε(p)
[
a†p,+ap,+ − a−p,−a

†
−p,−

]

=
∑

p,s

ε(p) a†
p,saps −

∑

p

ε(p) . (3.23)

By using the operators a†
p,s and ap,s, the effective hamiltonian (3.18) assumes the diagonal form

H ≃
∑

p,s

ε(p) a†
p,saps + E0 , (3.24)
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where
E0 =

∑

p

[w(p)− ε(p)−∆pXp] + EF (V, µ) . (3.25)

The operators a†
p,s and ap,s verify

{ap,s , a†q,r} = δsr
h3

V
δ(p− q) ,

{ap,s , aq,r} = 0 = {a†
p,s , a

†
q,r} , (3.26)

and represent the creation and annihilation operators for quasi-particles (the so-called bogolons)
with dispersion relation ε(p). The grand partition function (3.3) is given by

Q(T, V, µ) = Tr
[
e−H/kT

]
= e−E0/kT

∏

p,s

[
1 + e−ε(p)/kT

]
, (3.27)

and then the grand potential Ω for the system of conducting electrons turns out to be

Ω(T, V, µ) = −kT
∑

p,s

ln
[
1 + e−ε(p)/kT

]
+ E0 . (3.28)

The introduction of Step 1 clarifies the nature of the bogolons and the resulting formalism is
consistent with the vanishing of the bogolon chemical potential. Note that, if the Bogoliubov
transformation is directly applied to the creation and annihilation operators b†

p,s and bp,s of

the electrons, one finds sign ambiguities [27] in the energy spectrum. The method that has been
presented here has the advantage of avoiding these ambiguities. By the way, the correct solution

of these ambiguities is rather nontrivial. Because, if the electron effective energy η(p) takes the
place of w(p), the thermodynamic consistency requires that the right sign of the dispersion
relation should be +ε(p) when |p| > p0 and −ε(p) when |p| < p0. The correct value (3.25) of

the energy E0 of the vacuum of the quasi-particles is a fundamental ingredient in the following
discussions in Section 4 and Section 5. Group properties of the quasi-particles vacuum and

features of the solution of the gap equation have been discussed, for instance, in Ref.[29, 30, 31].
In order to complete the derivation of Ω, one has to impose the statistical self-consistency

of the approximation (3.8), in which the mean values (3.6) have been used. Let us briefly recall

the method which is usually presented in literature for this purpose. The mean values (3.6) can
be related with the mean values of the corresponding operators defined in terms of a†

p,s and ap,s.
Since the quasi-particles created and annihilated by a†

p,s and ap,s behave as free particles, the

only nontrivial mean value is given by ⟨a†
p,sap,s⟩ = np, where the quasi-particle distribution np

is shown in equation (2.5). In this way, by using the definition (3.9), one can obtain the gap

equation [3, 4, 27, 28, 32]

1 =
U0

V

∑

p

′ 1

2ε(p)
Th [ε(p)/2kT ] , (3.29)

where
∑

p

′
denotes the integral in the neighbourhood of the surface of the Fermi sphere which

is specified by the condition
∣∣(p2/2m)−µ

∣∣ ≤ !ωD. In the next section, an alternative derivation
of the gap equation will be produced.
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4 Thermodynamic consistency and the gap equation

From the definition (3.9) and the experimental fact that the superconducting electrons belong to

a neighbourhood of the Fermi surface, where Up,q ≃ −U0/V , it follows that one can put

∆p =

⎧
⎨

⎩

∆ for
∣∣(p2/2m)− µ

∣∣ ≤ !ωD ;

0 otherwise;
(4.1)

and then

−
∑

p

∆pXp =
V

U0
∆2 . (4.2)

Let us now consider the expression (3.28) and let us assume, for the moment, that the value ∆
of the gap is a free undeterminate which is not specified by the gap equation; one has

Ω(T, V, µ) = −2kT
∑

p

ln
[
1 + e−ε(p)/kT

]
+ E0 , (4.3)

where

E0 =
∑

p

[ ∣∣(p2/2m)− µ
∣∣− ε(p)

]
+

V

U0
∆2 + EF (V, µ) . (4.4)

Let us denote by B the neighbourhood of the Fermi surface which is defined by the condition∣∣(p2/2m)− µ
∣∣ ≤ !ωD. Then

ε(p) =

⎧
⎪⎨

⎪⎩

[
|(p2/2m)− µ|2 +∆2

]1/2
for p ∈ B;

|(p2/2m)− µ| otherwise.

(4.5)

Since Ω is the thermodynamic potential associated with the variables (T, V, µ), for fixed (T, V, µ)
the system tends to minimize Ω. So, in the equilibrium state, the value ∆̃ of the gap can be ob-
tained by imposing the variational condition

(
∂Ω

∂∆

)

T,V,µ

∣∣∣∣
∆=∆̃

= 0 . (4.6)

Since

∂ε(p)

∂∆
=

⎧
⎨

⎩

∆/ε(p) when
∣∣(p2/2m)− µ

∣∣ ≤ !ωD ;

0 otherwise,
(4.7)

one finds
∂

∂∆

{

−2kT
∑

p

ln
[
1 + e−Ep/kT

]
}

= ∆
∑

p

′ 1

ε(p)

2

eε(p)/kT + 1
. (4.8)

Moreover
∂

∂∆

∑

p

[∣∣(p2/2m)− µ
∣∣− ε(p)

]
= −∆

∑

p

′ 1

ε(p)
, (4.9)
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and
∂

∂∆

(
V

U0
∆2

)
= ∆

2V

U0
. (4.10)

Equations (4.8)-(4.10) imply

∂Ω

∂∆
= ∆

{
∑

p

′ 1

ε(p)

[
2

eε(p)/kT + 1
− 1

]
+

2V

U0

}

. (4.11)

By using the identity
2

eε(p)/kT + 1
− 1 = −Th(ε(p)/2kT ) , (4.12)

the minimum condition (4.6) turns out to be equivalent to (apart from the trivial solution)

1 =
U0

V

∑

p

′ 1

2ε(p)
Th(ε(p)/2kT ) , (4.13)

which coincides precisely with the gap equation (3.29). In what follows, the value of the gap
satisfying equation (4.13) will be simply denoted by ∆ = ∆(T, µ).

To sum up, the grand potential Ω for the electrons system takes the form

Ω(T, V, µ) = Fq(T, V ;∆(T, µ)) + E0(V, µ;∆(T, µ)) , (4.14)

where Fq denotes the free energy for the gas of quasi-particles, with dispersion relation ε(p)
shown in equation (4.5), and E0 of equation (4.4) represents the vacuum energy of the quasi-
particles. The value ∆(T, µ) of the gap corresponds to a minimum of Ω for fixed (T, V, µ).

Let us now consider the issue of the thermodynamic consistency of the result (4.14). The
starting expression (3.3) is thermodynamically consistent, because the dependence of the grand
partition function on the macroscopic variables (T, V, µ) is the standard dependence of statis-

tical physics. However, when the dependence of the gap on the variables T and µ has been
introduced, ∆ = ∆(T, µ), the standard rules of statistical physics have been modified. Now,

the dependence of Ω on the variables (T, V, µ) consists of two parts:

• the (thermodynamically consistent) explicit dependence on (T, V, µ) displayed in expres-

sions (4.3)-(4.5);

• the indirect dependence on (T, µ) through ∆ = ∆(T, µ).

Let us distinguish these two possibilities by means of the notation

Ω = Ω(T, V, µ;∆(T, µ)) . (4.15)

When computing the derivatives of Ω one finds, for instance,

∂Ω

∂T
=

(
∂Ω

∂T

)

∆

+

(
∂Ω

∂∆

)

T

∂∆

∂T
. (4.16)

But since the value of the gap minimizes Ω, the term (∂Ω/∂∆)T vanishes, and then the deriva-
tive ∂∆/∂T does not contribute to ∂Ω/∂T . Therefore, only the thermodynamically consistent

11



dependence of Ω on (T, V, µ) really contributes to the derivates. This means that the Maxwell
relations associated with Ω are satisfied.

Let us now consider a generic thermodynamic potential which is derived from Ω by means

of appropriate Legendre transformations. As far as the variable ∆ is concerned, the so-called
theorem of small increments [33] takes the form

0 =

(
∂Ω

∂∆

)

T,V,µ

=

(
∂F

∂∆

)

T,V,N

=

(
∂U

∂∆

)

V,S,N

= · · · , (4.17)

and states that ∆ really corresponds to a stationary point of each potential (provided the cor-

responding set of thermodynamic variables is kept fixed). Consequently, when constructing
the thermodynamic relations by means of the first derivatives of the potentials, ∆ effectively
behaves like a constant term, and does not alter the Maxwell relations. Thus, because of the va-

lidity of the gap equation, the quasi-particles description of the systems, which is given —in the
low temperature limit— by the grand potential (4.14), is perfectly consistent with the validity

of the standard thermodynamic relations.
This example of superconducting electrons is in agreement with the Landau principle, which

states that the value of any order parameter entering a given thermodynamic potential actually

corresponds to a stationary point of the same potential, with the appropriate thermodynamic
variables held fixed.

5 Thermodynamic potentials

Quite often, the complete expression (4.14) of the grand potential and, in particular, the com-
plete expression (4.4) of the energy E0 are not explicitly displayed in literature. In certain cases,
the combination

∑
p
[w(p)− ε(p)−∆pXp] is reported, however the term EF (V, µ) is missing.

Consequently, in these cases the partial derivatives of Ω with respect to V and µ are invalidated
and thus the deduction of the thermodynamic potentials as functions of the variables (T, V,N)
becomes problematic. Usually, the explicit derivation of the general dependence of the super-
conducting thermodynamic potentials on (T, V,N) represents a rather laborious task. So, let
us now derive from equation (4.14) a few thermodynamic potentials as functions of (T, V,N)
when T < Tc in the low temperature limit. Let us compute, in particular, how the chemical
potential gets modified by the superconducting phase transition and how µ depends on the elec-
tron density. The dependence of µ on (T, V,N) is indeed the fundamental ingredient for the

determination of the consistent thermodynamic potentials.
In the T → 0 limit, the quasi-particles distribution is mainly concentrated around the min-

imum of the energy spectrum. The energy (3.21) of a single quasi-particle can be written as
ε = εw =

√
w2 +∆2 and, in a neighbourhood of the minimum w = 0, it can be approximated

as

εw =
√
w2 +∆2 ≃ ∆+

w2

2∆
. (5.1)

Accordingly, in the computations of Fq and of E0 the integral in momentum space is effectively
dominated by the integration in a neighbourhood of the surface of the Fermi sphere and it can
be written as

∑

p

→
V (2m)3/2

2π2!3

√
µ

∫
dw . (5.2)
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The grand potential (4.14) reads

Ω(T, V, µ) ≃ −V kT
(2m)3/2

π2!3
µ1/2

∫ ∞

0

dw ln
[
1 + e−εw/kT

]

+V
(2m)3/2

2π2!3
µ1/2

∫
!ωD

0

dw [w − εw]

+
V

U0
∆2 −

2V (2m)3/2

15π2!3
µ5/2 . (5.3)

In the thermodynamic limit, the statistical mean value N of the number of electrons is specified
by the relation N = −∂Ω/∂µ, which takes the form

3π2!3

(2m)3/2
N

V
≃ µ3/2 +

3kT

2µ1/2

∫ ∞

0

dw ln
[
1 + e−εw/kT

]

−
3

4µ1/2

∫
!ωD

0

dw [w − εw] . (5.4)

In the low temperature limit one has ∆/εF ≪ 1 and (kT/εF ) ≪ 1, where εF denotes the Fermi

energy

εF =
!2

2m

(
N

V

)2/3 (
3π2

)2/3
. (5.5)

So, the chemical potential can be determined perturbatively in powers of (kT/εF ) ≪ 1 and

∆/εF ≪ 1 from equation (5.4); to lowest non-trivial orders one finds

µ ≃ εF −
kT

εF

∫ ∞

0

dw ln
[
1 + e−εw/kT

]
+

1

2εF

∫
!ωD

0

dw [w − εw] . (5.6)

This relation gives the desired expression for the chemical potential. It should be noted that,

in addition to the quasi-particles contributions to µ, the last term on the right-hand-side of
equation (5.6) describes precisely the effects of the quasi-particles vacuum rearrangement —
that takes place at the critical point— on the chemical potential. The free energy F is given by

F = Ω+Nµ ,

F (T, V,N) ≃ −
3NkT

εF

∫ ∞

0

dw ln
[
1 + e−εw/kT

]
+

3

5
NεF

+
3N

2εF

∫
!ωD

0

dw [w − εw] +
V

U0
∆2 . (5.7)

The entropy S = −∂F/∂T turns out to be

S(T, V,N) ≃
3Nk

εF

∫ ∞

0

dw ln
[
1 + e−εw/kT

]

+
3N

T εF

∫ ∞

0

dw
εw

eεw/kT + 1
, (5.8)
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and coincides with the entropy of the gas of quasi-particles, as it must be. Finally, the internal
energy U = F + TS is given by

U(T, V,N) ≃
3N

εF

∫ ∞

0

dw
εw

eεw/kT + 1
+

3

5
NεF

+
3N

2εF

∫
!ωD

0

dw [w − εw] +
V

U0
∆2 . (5.9)

The consequences of expressions (5.3)-(5.9) are in agreement with the known results [3, 4, 13,

27, 34, 35] on superconductivity. As a check, let us compute the condensation energy. The
energy of the quasi-particles gas can be obtained by means of the gaussian approximation

3N

εF

∫ ∞

0

dw
εw

eεw/kT + 1
≃

3N∆

2εF
e−∆/kT

√
2π∆kT ; (5.10)

this energy contribution vanishes in the T → 0 limit. Since ∆/!ωD ≪ 1, one finds

∫
!ωD

0

dw [w − εw] ≃ −1
4
∆2 + 1

2
∆2 ln(∆/2!ωD) . (5.11)

In the T → 0 limit, the value of ∆ is specified by the gap equation (4.13); in particular, when

(3NU0/4V εF ) ≪ 1, one obtains [3, 4, 13]

(∆/2!ωD) ≃ e−(4V εF /3NU0) . (5.12)

By means of relation (5.12), one gets

3N

2εF

∫
!ωD

0

dw [w − εw] +
V

U0
∆2 ≃ −

3N∆2

8εF
. (5.13)

Within the considered approximations, the value EC of the condensation energy is obtained
by subtracting the energy of a free fermions gas at T = 0 from the system energy U(T =
0, V, N). Since the energy of a free electrons gas in the Fermi sphere is equal to (3/5)NεF , the

condensation energy EC turns out to be

EC = U(T = 0, V, N)−
3

5
NεF = −

3N∆2(T = 0)

8εF
, (5.14)

which is in agreement with the results of the alternative derivations presented in [3, 4, 13].

6 Summary and conclusions

In the Bogoliubov-Valatin approach, it has been shown that the relevant variables —that must

be considered for the computation of the thermodynamic potentials— are associated with the
energy fluctuations of the system around the Fermi sphere configuration. By means of a Bo-
goliubov transformation in these variables one gets the expression of the quasi-particles vacuum

energy, which is the fundamental ingredient in the construction of the grand potential Ω(T, V, µ)
for the superconducting electrons. The value of the gap corresponds to a minimum of Ω and the

14



gap equation precisely represents the stationarity condition. When the gap equation is satisfied,
Ω and the thermodynamic potentials that are derived from Ω satisfy the Maxwell relations. The
expressions of the thermodynamic potentials as functions of the (T, V,N) variables have been

derived. The dependence of the chemical potential on the electron density and the effects of
the superconducting phase transition on the chemical potential have been computed in the low

energy limit. As a final check, a derivation of the condensation energy from Ω(T, V, µ) has been
presented.
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