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No one did more than Nambu to bring the idea of spontaneously broken symmetries
to the attention of elementary particle physicists. And, as he acknowledged in his
ground-breaking 1960 article “Axial Current Conservation in Weak Interactions”, N ambu
was guided in this work by an analogy with the theory of superconductivity, to which
Nambu himself had made important contributions. It therefore seems appropriate to
honor Nambu on his birthday with a little pedagogical essay on superconductivity, whose

There is something peculiar about standard textbook treatments of supercon. -

ductivity, O

electrons are represented with a complex scalar field. * And there is the microscopic model
of Bardeen, Cooper and Schrieffer, from which the Ginzburg-Landay theory can be
deriveq, and in which electrons appear explicitly, but are assumed to interact only by
single-phonon exchange. How can one possibly use such approximations to derive
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especially emphasized by Anderson, One needs detailed models like that of Bardeen,
Cooper and Schrieffer to explain the mechanism for the Spontaneous Symmetry break,~

This article offers such a derivation. No new results are obtained, and no attempt is
made to derjve numerical results for quantities like critical temperatures, coherence
lengths, etc., that cannot be predicted with very high accuracy anyway. The one goal of
the derivations below is to show explicitly how the fundamenta] properties of supercon.
ductors may be explained without introducing any unnecessary approximations,

§2. Broken gauge invariance

$(x)~exp(iflg/h) g(z). (1)

(For the moment, we will ignore the interactions of the electromagnetic field, so A is for
Now a position-independent phase. Local gauge invariance wil] be introduced a little
later) We assume that all charges q are integer multiples of the electron charge —¢, 5o
phases A and A+2rh/e are to be regarded as identical.

This U(1) is Spontaneously broken to Z», the subgroup consisting of {/(1) transfor-
mations with 1 =0 ang A=rxh/e. The assumption that 2, is unbroken arises of course
from the physical picture that, while pairs of electron operators can have non-vanishing
éxpectation value, individual electron Operators do not. But for us it only is important
that Z; is unbroken, '

requires that Nambu-Goldstone bosons have zero mass; a more genera] statement is that
their energy vanishes in the limit of Zero momentum,

In our case, there will be a single N ambu-Goldstone excitation, described by a field
¢(x) that transforms under G=U(1) like the phase A itself. The group U(1) has the
multiplication rule 9(A)g(A,) =9(Mi+,), so under a gauge transformation with para.
meter A, the field #(x) will undergo the transformations

$(x)=d(x)+4. (2)

*) This is itself an approximation, valid in the limit of large numbers of atoms.
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But ¢(x) parameterizes U(1)/Z2, not U(1), so ¢(x) and ¢(x)+h/e are taken to be
equivalent field values:

d(x)=¢(x)+rh/e. (3)

To see that the theory must involve such a Nambu-Goldstone field, start with a
U(1)-invariant Lagrangian involving only ordinary fields ¢(x) (like one-electron opera-
tors) that have conventional U(1) transformation properties (1), and write all such fields
as

o(x) =expligd(z)/h) §(x) » (4)

with gauge-invariant fields & (x) subject to some convenient constraint, as for instance
that some particular bilinear combination of the one-electron operators isreal. Thisisof
course a purely formal construction, that could be carried out whether or not
electromagnetic gauge invariance were spontaneously broken. The characteristic prop-
erty of a system with broken symmetry is that the quantity #(x) behaves as a propagating
field; the second variational derivative of the Lagrangian with respect to #(x) has
non-vanishing expectation value. We will return to this point briefly at the end of this
section, and more explicitly in § 3. .

Now we turn on the interaction of the superconductor with the electromagnetic fields
B and E. These are written as usual in terms of vector and scalar potentials, as

B=vx4, E=-ra-4 (5)
Their interaction is governed by the principle of local gauge invariance, under which the
Nambu-Goldstone field ¢(x) transforms as before under U(1), but now with space-time-

dependent phase:

#(x) - ¢(x)+ Alx). (6)
The potentials themselves transform as usual, as
A(x) - A(x)+7A(x),
o)y _0A(x) ‘
A%(x)- A%x) T (7

However, it is important to note that in this formalism all other field operators are
gauge-invariant. This is because we introduced the Goldstone bosons by writing the
ordinary fields ¢(x) according to Eq. (4) in terms of gauge-invariant fields &(x).

It follows that the Lagrangian®’ for the superconductor plus electromagnetic field may
be written as

L=1 (2B~ B)+Lal7 64, 4+4°, d). ®

Here the matter Lagrangian L= is a more-or-less unknown functional of the gauge-
invariant combinations of d.¢ and A, as well as of unspecified gauge-invariants ¢
representing the other excitations of the system.

The reader may recognize this as a highly generalized version of the Ginzburg-

® By “Lagrangian” [ mean here something like the effective action of quantum field theory, including effects of
quantum fluctuations. I must admit that I am not sure how to justify the use of this formalism in dealing
with dissipative systems, like real metals.
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Landau theory, with 2e#/# playing the role of the phase of the wave function in that
theory. Many of the arguments below are adapted from standard treatments of the
Ginzburg-Landau theory.” 1 will have a little more to say about the Ginzburg-Landau
theory in the final section.

From the matter Lagrangian, we can obtain the electric current and charge density as
variational derivatives

_ OLnm
J(I)—6A(I)' (9)
—OLm __ _OLm_
)= =300~ 342 (10
The Lagrangian equations of motion for #(x) then yield
O(y=—D 8Ln___ 8Ln___ . OLn |
ot ot 8¢(x) 3é(x) 0A(x)’

which we recognize as the equation of charge conservation
Len)=-7-J), (D

The fact that Eq. (11) follows from the equation of motion for ¢(x) alone is a consequence
of the formalism we are using, in which ¢(x) is the only gauge-noninvariant matter field.

We will not need to specify the structure of the functional Ln, but we will need to
assume that in the absence of external electromagnetic fields, the superconductor has a
stable equilibrium configuration with vanishing fields

7o—A=¢+A°=0. (12)

The existence of such an equilibrium configuration is equivalent to the requirement that,
for small values of 7 ¢— 4 and ¢ + A°, the leading terms in the matter Lagrangian Ln are
at least of second order in these quantities.*” Furthermore, the assumption that
electromagnetic gauge invariance is spontaneously broken is equivalent to the statement
that the coefficients of the terms in the L= of second order in ¥ ¢—A and é + A° have
non-vanishing expectation values, so that ¢ behaves like an ordinary physical excitation.
(The formalism discussed in § 7 shows that this would not be the case for unbroken gauge
invariance.)

We now turn to the consequences of these general assumptions.

§3. Meissner effect

One of the most important aspects of superconductivity is that, in the static case with
é =A°=0, the quantity ¥ #— A must vanish deep in a large superconductor. It follows

*) | am not sufficiently familiar with the history of the theory of superconductivity to know whom to credit with
the derivations presented here, or to judge what might be original in these derivations. [ will therefore not
attempt to give references to the original literature in this article.

**) The absence of first-order terms in 7 ¢ — A can also be inferred from reflection and rotation invariance, but
we need a special assumption about equilibrium at (12) to deal with real superconductors, wher rotation
symmetry is broken by the crystal structure. (Also, as I learned from Nambu, it has been pointed out by
Anderson that terms linear in ¥ ¢ — A are forbidden if there are no perturbations that violate time-reversal
invariance.)
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that the magnetic field B=F X A must also vanish .deep in the superconductor.

To derive these results, note first that, when ¢ = A°=0, the matter Lagrangian for
sufficiently small values of A— ¥ ¢ may according to our general assumptions be written
as a quadratic functional of these quantities ’

L".:Lmo—%f(:u(l‘, JJI)(A.'(I)_ Vi¢(x))
X(A; () =7/ o(xNd*xd’xc' +-- - (13)

with Lmo independent of A and ¢. The kernel C is clearly symmetric
Cij(d’:, x')‘zcji(.l", .1’). (14)

Also, since in these circumstances — L= is the energy of the system, and since we assume
that there is a stable equilibrium with A— 7 ¢ =0, the kernel C must be also positive, in the
sense that

fC.—;(.i‘, x)adx)ai(x)d’xd*s 20 (15)

for all a:.(x). The characteristic property of a superconductor is that C:; does not vanish.
From Egs. (13) and (9); we obtain the Pippard formula for the electric current density:

Jiz) == [Culz, 2)ALZ) =7/ $(xNd’z" (16)

In the absence of other long-range forces, the function Ci(x, x’) will be only moderately
non-local, vanishing when | x—x'| is greater than some characteristic distance £, so (16)
can be assumed to hold when A— 7 ¢ is small near x, whether or not it is small every-
where.

Now consider a large superconductor placed in a small steady magnetic field.
Suppose for a moment that all or part of the field could penetrate the superconductor, with
A— 7 ¢ taking values typically of some orderA. The energy of the superconductor would
then be increased by an amount of order CE3L3A?, where C is a typical magnitude of the
kernel Ci;(x, &) in Eq. (13), £ is a typical value of its range, and L is a typical length scale
of the superconductor. The magnetic field B will be of order A/L, so this energy can be
written as CE°L5B?.  But it costs only an energy of order B>L® to expel the field from the
superconductor entirely, so for sufficiently large superconductors, with C§3L?>1, it will be
energetically favorable for A— F ¢ to be zero almost everywhere in the superconductor.
This result does not apply in an ordinary non-superconducting metal, because there Ci;=0,
and the energy density there does not depend on 4, but only on B.

For purposes of illustration, it is convenient to make the simplifying assumption that
the material of the superconductor is invariant under translations, rotations, and
reflections. The kernel in Eq. (16) then takes the form

Ciilz, x)=8uc(lz—x )+ 7V .V,dlx—z1) (17)

with unknown (but finite-range) functions ¢ and 4. The field equation then reads
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7 XB(x)= —fd’x'c(lx-.r'lz) [A(x) =7 ¢(2)]

~7 7 [er dlz—z ) [A(2) - 7 8], (18)

To eliminate ¢ we take the curl, which gives

V’B(f)=fd’.r'c(|.z'—.r'l2)B(.r'). : (19)

For a superconductor that fills the half-space y>0, with an external field in the -
direction, the solution of Eq. (19) (and 7 -B=0] is

szBoe-y“, Bysz:'O, (20)
where A is the penetration depth, given by the solution of
l/Azzfd.rdydz clx?+y*+ 2z e, (21)

(Note that A is real, because the positivity condition (15) makes c(7?) positive. As A

increases from 0 to co, the left-side decreases steadily from oo to 0, while the right-side

increases steadily from 0 to some finite value, so (21) always has just one solution.)
The current, given by ¥ X B, is then

]z=%Boe-y“, .]x:.]y:O- (22)
The solution of Eq. (18) is ;
(Fé—A):=ABoe™*, (F¢—A):=(V¢—A4),=0. (23)
!

This solution is strictly valid only deep in the superconductor, i.e., for y>A4, both
because we ignored edge effects in solving Eq. (19), and also because, unless B, itself is
very small, it is only deep in the superconductor that the fields are small enough to allow
the use of the quadratic approximation (13) to the Lagrangian. Thus B, in Eq. (20)
should be regarded as an integration constant, which gives the value of the magnetic field
extrapolated to the surface, rather than the actual surface field.

§4. Flux quantization

In a simply-connected time-independent superconductor the Nambu-Goldstone field ¢
is irrelevant, because we can eliminate it by a gauge transformation with A(r) equal to
—¢(x). However, in a multiply connected superconductor, ¢(r) can jump by multiples
of nh/e, while A must be continuous, so this gauge transformation may not be possible.

Consider for example a superconducting ring, with thickness much greater than the
penetration depth A. Draw a closed contour % that follows the ring, deep inside it. On
%, V ¢— A vanishes, so the change in ¢ around % is

a6=4v¢-di={a-ai=o, (24)
where @ is the magnetic flux through the area A bounded by &

o= [(7x4)-dS. (25)
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Since ¢ can only change around the ring by multiples of 7#/e, we must have quantized flux
through the ring

O=nrhle. (n=0, £1, 2, ) (26)
§5. Infinite conductivity

The result of the previous section has the consequence that a current flowing through
a superconducting loop cannot decay smoothly, but only in jumps at which the flux |@|
drops by multiples of 7#/e. This shows that the supercurrent is not affected by ordinary
electrical resistance, but this derivation was limited to thick closed rings. In order to
understand the phenomenon of infinite conductivity in a more general context, it is
necessary to say a little about time-dependent effects in superconductors. (This will also
be needed in the next section, where we calculate the Josephson frequency.)

We recall that, according to Eq. (10), the charge density is given by

_ _OLm
_E(I)—ad(x)’

so —&(z) is the dynamical variable canonically conjugate to #(z). In the Hamiltonian
formalism, the matter Hamiltoqian Hn is then to be regarded as a functional of ¢(r) and
e(x) rather than of ¢(x) and #(z), with the time-dependence of ¢ given by

irv_  OHn
¢(I)—‘m. (27)

The “voltage” at any point can be regarded as the change in the energy density per change
in the charge density at that point, or

_ 0Hn
Vx) =3elz)" (28)
Hence the time-dependence of the Nambu-Goldstone field at any point is simply given by
the voltage

) =—V(z). (29)

One immediate consequence is that a piece of superconducting wire which carries a steady
current, with time-independent fields, must have zero voltage difference between its ends.
If the voltage difference were not zero, then according to Eq. (29) the gradient 7 ¢(x)
would have to be time-dependent, leading (as in Eq. (16)) to time-dependent currents or
fields. A zero voltage difference at finite current is just what we mean by infinite
conductivity. _

Some textbooks relate the infinite conductivity of superconductors directly to the
existence of an energy gap separating a Fermi sea of paired electrons from their excited
unpaired states. This seems to me misleading. The arguments given here show that
infinite conductivity depends only on the spontaneous breakdown of electromagnetic
gauge invariance, and would presumably occur even if the charged particles, whose
pairing produced the symmetry breakdown, were bosons rather than fermions. In any
Case, these are known examples of superconductors without gaps. The one respect in
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which Fermi statistics plays a crucial role in superconductors is that the existence of a
Fermi surface enhances the long range effects of the phonons whose exchange is respon-
sible for the electron pairing. But this is only important in showing that electromagnetic
gauge invariance can be spontaneously broken, not in deriving the general consequences
of this breakdown discussed here, such as infinite conductivity.

§6. The AC Josephson current

Consider a gap between two superconductors. Assuming no gradients along the
surface of the gap, and no vector potential, gauge invariance will allow the contribution
of this junction to the matter action to depend only on the difference 4¢ between the
Nambu-Goldstone field in the two superconductors. Furthermore, we can shift ¢ in either
superconductor by a multiple of 74#/e without changing its physical significance, so the
contributions of the junction to the matter action must be a periodic function of 4¢

LJunctlon:JF(Aqs) ) (30)
F(d4¢)=F(d¢*rhle), (31

where A is the junction area. (Josephson calculated this function, and in effect found it to
be proportional to cos(2ed¢/#), but this specific result was based on an approximate
model, and cannot be regarded as having the same general validity as the periodicity
itself.)

In the presence of a vector potential, the difference 4d¢ must be replaced with the
gauge invariant quantity

a¢= [al-(v 4~ 4) (32)

the integral being taken over a line joining the superconductors. We can then derive the
current per unit area across the junction as

g =Shmeuen - _ g 44) 5. (33)
where 7 is the unit normal to the gap.

Now suppose that the two superconductors are maintained at uniform but different
voltages, with a voltage difference 4V. According to Eq. (29), the Nambu-Goldstone
field ¢ in each superconductor will decrease at a rate equal to the voltage in that
superconductor, so the difference in these fields will have time dependence (now taking A

A¢=—tAV +constant. (34)

Combining (31), (33) and (34), we see that the current oscillates, with a frequency

ejl[zl . (35)

V=

However the oscillation is not in general a pure sine wave — in principle all harmonics of
the frequency (35) will be present.
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§7. Order Parameter and vortex lines

Up to this point, we have not had to say anything about the other excitations (symbol-
ized by ¢) in the matter Lagrangian L. This is just as well, because in general we have
no precise information abouyt them. There is one situation, however, in which we can
make model-independent statements about other excitations. It is when the materia] is
brought, by whatever means, close to a state in which it loses its superconductivity.

When electromagnetic gauge invariance ig unbroken, the excitations of the system
must fall into ordinary linear representations of the gauge group. Since the group is
U(1), these representations are just complex singlet fields transforming as in Eq. (1).
Each can be decomposed into a modulus and 3 phase. By continuity then, when the
material is close to losing its superconductivity, the N ambu-Goldstone field #(x) must be
accompanied with a modulus field o(x), so that there is a linearly transforming field,
known as the order parameter

x(x) =o(x)exp(2ied(x)/h). (36)

The argument of the €xponential is taken to be 2ied/% in order that x(x) should transform
as in Eq. (1); with q=2e, which is necessary in order that a non-zero expectation value of
x(x) will break U(1) down to Za, as assumed in § 2.

The modular field o(x) plays an important role in the dynamics of vortex lines.
These arise when a superconductor is placed in a magnetic field that is strong enough so
that tubes of magnetic flux penetrate the material. We can show in this case that each
such flux tube must contain a vortex line (or perhaps a finite vortex tube), along which
electromagnetic gauge invariance is no¢ broken. The behaviour of the modular field o(x)
near a vortex line turns out to be uniquely determined by the total magnetic flux through
the flux tube.

To see this, begin by drawing a contour that circles the flux tube, but far outside it,
deep in the superconducting materia]. Just asin § 4, the quantity V¢—4 vanishes on this
contour, so the change in # around the contour equals the line integral of 4 around it, and
hence equals the magnetic flux @Oror through it. The change in ¢ is an integer multiple
of nh/e, so

48= Oror=nzh/e. (37)

hence by continuity will continue to be given by Eq. (37).

Since ¢ changes by a finite fixed amount around the contour, it is not possible to
shrink this contour down to zero area without éncountering a region in which the field ¢
is irrelevant, which requires that in this region 0 =0 and the {/ (1) symmetry is restored.

dimensional, a vortex line along which o =0
The “order parameter” (36) must be a smooth function of position, so if it vanishes



52 S. Weinberg

along some vortex line, then it must do so as a power series in the distance from the line.
Suppose we label some point on the vortex line as x=y=2z=0, and let the z-axis run
locally along the line. Then for small x, y and z, the order parameter may be written as
a sum of terms of the form

(xxiy)t, (z£i){x?+yY, (r+iy)(xi+y?)?, -

[=0,1, 2, . (38)
In cylindrical coordinates z, 7, 8, the Nambu-Goldstone field then behaves as
Al
p—- = %e ) (39)

so comparing with (37), we see that / is related to the flux quantum number 7 by
n=x/. (40)
Also, the leading term in the modulus is
pocrt=7y" (41)

The results (39) ~(41) apply very close to the vortex lines. Very far from the vortex
line, we know in general only that ¥ ¢ — A vanishes exponentially, ‘vhile o approaches a
constant. At intermediate distances, there is not much (apart from (37)) that can be said
without relying on specific models. However, for a straight isolated vortex line,
symmetry arguments allow us to go a little farther. The invariances under rotations
around the z-axis and under electromagnetic gauge invariance are spontaneously broken
here, but Eq. (39) exhibits an unbroken symmetry under combined rotations by angles a
and electromagnetic gauge transformations with A= hna/2e. We can expect that this
will then be a symmetry of the whole system, not just for »—0, in which case for all r the
Nambu-Goldstone field must be given by

—hn
=50+ (7). (42)

With the introduction of the modulus field o we have come very close to the Ginzburg-
Landau theory '(and to the similar treatment by Feynman). In that theory, the Lagran-
gian is written as a sum of a few local terms of limited dimensionality involving a complex
field x(x) and its gauge-covariant derivative. Of course, we have made no such assump-
tions about the form of the Lagrangian, and hence we obtain less detailed predictions.
Beyond this there is a difference of point of view: Instead of regarding ¢(x) as the phase
of a complex wave function used in an approximate treatment of electron pairs, we regard
it here as a Nambu-Goldstone field, which inevitably accompanies the breakdown of
electromagnetic gauge invariance. Planck’s constant # .does not appear in the
differential equations governing ¢, but only in certain topological conditions, which arise
solely because of the incidental fact of chay}fge quantization,” and then only in the

* ot charge were not quantized then the Meissner effect and vanishing resistivity would still follow from broken
electromagnetic gauge invariance just as in §§ 3and 5. However in place of flux quantization we would have
the result that the magnetic flux through a thick superconducting ring vanishes. Also, the time-dependent
current produced by a voltage difference across a Josephson junction would be aperiodic. Planck’s constant
would appear nowhere in the macroscopic description of superconductivity.
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combination e/A. From this point of view, superconductivity is not macroscopic
quantum mechanics; it is the classical field theory of a Nambu-Goldstone field.
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