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Problema 1.
Una particella di massam si muove su una retta sotto l’azione di una forza elastica di co-

stante di richiamoκ. Al tempot = 0, mentre la particella si trova nello stato fondamentale,
il centro di richiamo vieneistantaneamente spostato di un trattox0.

(i) Calcolare il valore medio dell’energia al tempot > 0 generico;

(ii) Calcolare la probabilità che il sistema si trovi pert > 0 nello stato fondamentale e nel
primo stato eccitato della nuova Hamiltoniana.

(iii) Calcolare le eventuali discontinuità at = 0, per i valor medii di operatori di Heisen-
berg,xH , pH , ẋH e ṗH .

Problema 2.
Si consideri l’Hamiltoniana dell’atomo di un atomo di idrogeno, contenente, oltre

all’interazione Coulombiana, un’interazione spin-orbita dell’elettrone,

HS−O = AL · se, (1)

e l’interazione fra lo spin dell’elettrone e lo spin del protone (se = sp = 1
2),

HS−S = Bsp · se, (2)

conA, B costanti.

(i) Dire qual’è la degenerazione dei livellin = 1e n = 2, tenendo conto anche dello spin
dell’elettrone e del protone, quando si trascurano del tutto le interazionniHS−O e
HS−S di cui sopra.

(ii) Trascurando, invece, solo l’interazioneHS−S, si classifichino i livelli din = 1 en = 2
dell’atomo mediante gli operatori:

L2, J2, F2, Fz, (J = L+ se, F = J + sp) (3)

e si calcolino i relativi autovalori dell’energia.

(iii) Alcuni degli stati di cui al punto (ii) sono anche autostati dell’Hamiltoniana totale.
Dire quali e con quali autovalori.
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Soluzione

Problema 1.

(i) Il valor medio dell’energia è una costante del moto, perci`o basta calcolarlo al tempo
t = 0+: Pert < 0

H = H0 =
p2

2m
+

1
2

mω2 x2, ω =

√

κ
m

; (4)

pert > 0,

H =
p2

2m
+

1
2

mω2 (x− x0)
2 = H0−mω2 x0 x +

1
2

mω2 x0
2, (5)

quindi

〈H〉 = 〈ψ0|H0−mω2x0 x +
1
2

mω2 x0
2|ψ0〉 =

1
2

ω h̄+
1
2

mω2 x0
2. (6)

poiché la funzione d’onda at = 0+ è quella dello stato fondamentale diH0.

(ii) Osserviamo che le probabilità richieste non dipendono daltempo, essendoH costante
del moto pert > 0. Infatti, esprimendo la funzione d’onda at = 0+ come

ψ(x,0) =
∞

∑
k=0

an ψ(n)(x), (7)

doveψ(n)(x) sono autostati diH, la funzione d’onda at generico è

ψ(x,0) =
∞

∑
k=0

an e−iEn t/h̄ ψ(n)(x), (8)

perciò le probabilità di trovare il sistema in uno degli autostati diH sono

Pn = |an e−iEn t/h̄|2 = |an|2 (9)

e sono indipendenti dal tempo. Per calcolarean = 〈ψ(n)|ψ0〉 basta ricordare che a
t = 0 la funzione d’onda è data da:

ψ(x,0) = ψ0(x) =
(mω

πh̄

)1/4
e−

mω
2h̄ x2

; (10)

mentre gli stati stazionari diH sono

ψ(0)(x) =
(mω

π h̄

)1/4
e−

mω
2h̄ (x−x0)

2
; (11)

ψ(1)(x) = i
(mω

π h̄

)1/4
(

2mω
h̄

)1/2

e−
mω
2h̄ (x−x0)2

; (12)

a0 =

Z

dxψ(0)∗(x)ψ(x,0), (13)

a1 =

Z

dxψ(1)∗(x)ψ(x,0). (14)

Il calcolo è elementare, il risultato è

P0 = |a0|2 = e−
mω
2h̄ x2

0; (15)
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P1 = |a1|2 =
mωx2

0

2h̄
e−

mω
2h̄ x2

0. (16)

È interessante fare il calcolo dian facendo uso degli operatori di creazione e di
annichirazione. Sianoa, a† gli operatori definiti rispetto aH0 in maniera standard, e
ã, ã† gli operatori corrispondenti aH:

a =

√

mω
2h̄

x + i
1√

2mω h̄
p;

a† =

√

mω
2h̄

x− i
1√

2mω h̄
p, (17)

ã =

√

mω
2h̄

(x− x0)+ i
1√

2mω h̄
p;

ã† =

√

mω
2h̄

(x− x0)− i
1√

2mω h̄
p. (18)

Evidentemente

ã = a−C, ã† = a†−C, C =

√

mω
2h̄

x0. (19)

Ora scriviamo lo sviluppo (7) in notazione di Dirac,

|0〉 = ∑
n

an |n〉′, (20)

dove
ã |n〉′ =

√
n |n−1〉′, n = 1,2, . . . , (21)

visto che|n〉′ è l’n simo autostato diH. La condizione che|0〉 sia lo stato
fondamentale diH0 è

a |0〉 = 0, [ ã+C ] ∑
n

an |n〉′ = 0, (22)

dal quale si ottengono (facendo uso di (21) ) delle relazionidi ricorrenza

an =
(−C)√

n
an−1 = . . . =

(−C)n
√

n!
a0. (23)

Dalla condizione di normalizzazione

1 = ∑
n
|an|2 = |a0|2 eC2

, ... |a0|2 = e−C2
. (24)

Si trova dunque, la probabilità di trovare il sistema nell’n -simo stato
dell’Hamiltoniana nuova è

Pn = |an|2 =
C2n

n!
e−C2

(25)

che è una distribuzione Poissoniana. Pern = 0 en = 1 ovviamente il risultato è in
accordo con quanto trovato prima, ma questo metodo è più adatto per calcolare le
probabilitàPn pern generico.
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n L J F Energia Grad. Degener.
1 0 1

2 0, 1 E1
(0) 4

2 0 1
2 0, 1 E2

(0) 4
2 1 1

2 0, 1 E2
(0)−A 4

2 1 3
2 1, 2 E2

(0) + 1
2 A 8

Tabella 1:

(iii) I valor medii dix e di p non subiscono discontinuità, a causa dell’accensione della
perturbazione. Infatti la funzione d’onda è uguale at = 0− e at = 0+.
Analogamente perddt x che è uguale ap/m.

d
dt

p = − ∂
∂x

V (x), (26)

è discontinua a causa del cambiamento diV (x),

∂
∂x

V (x) = mω2 x, t = 0−; (27)

∂
∂x

V (x) = mω2 (x− x0), t = 0+. (28)

La dicontinuità richiesta è

∆〈 d
dt

p〉 = mω2 x0. (29)

Problema 2.

(i) La degenerazione del livellon è 4n2, con lenergia

E(0)
n = − me4

2h̄2 n2
. (30)

(ii)

HS−O = AL · se =
1
2

A [J2−L2− se
2 ] =

1
2

A [J(J +1)−L(L+1)− 3
4

]. (31)

da cui segue il risultato in Tabella 1.

(iii)

H = H0 + AL · se + Bsp · se

= H0 +
A
2

[J2−L2− se
2 ]+

B
2

[S2− 3
4
− 3

4
] (32)

Gli stati |L,J,F,Fz〉 della Tabella 1. in generale non sono autostati diH totale,
perchéJ2 non commuta conS2, ma questo non esclude che lo siano alcuni di essi.
Questo accade quando i valori diL eF univocamente determina anche il valore diS,
dove

S = se + sp; F = L+ S. (33)

Dalla regola di composizione di momenti angolare, si ha il risultato riportato nella
Tabella 2.
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n L J F S Energia Grad. Degener.
1 0 1

2 0 0 E1
(0)− 3B

4 1
1 0 1

2 1 1 E1
(0) + B

4 3
2 0 1

2 0 0 E2
(0)− 3B

4 1
2 0 1

2 1 1 E2
(0) + B

4 3
2 1 1

2 0 1 E2
(0)−A + B

4 1
2 1 3

2 2 1 E2
(0) + A

2 + B
4 5

Tabella 2:
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