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N.B. Chi desidera recuperare il Compitino | del 15 nov. deve visd il Problema 1. Il tempo
disponibile & 2.5 ore. Chi desidera il recupero solo del @itino Il del 21 dic. deve risolvere il
Problema 2. Il tempo disponibile: 2.5 ore. Per Appello Ieinpo disponibile & di 4 ore.

Problema 1. Una coppia di sistemi unidimensionali che hanno gli speténitici tranne
lo stato fondamentale, puo essere costruita come segoedlinremo due operatori

ip ip

-7 L
A_m+W(x), Al = m+W(x), (1)

dove p & I'operatore dellimpulsoW(x) € una funzione reale. Le Hamiltoniane dei due
sistemi sono allora date da

2 2
W _ata= Py @ _apnt= P yO
HY =ATA= "= 4 vil(x),  HE =AAT= " +VE (), 2)
dove F R
VU =W (x) - —W'(x), VP (x) = W3(X) + —= W' (X). 3
(9 = W20 — = W) ) =W+ =W (. @)
(i) Supponiamo chéW(x)| — o a x — +oc. Si dimostri che gli autostati di energia
soddisfano
V>0 E?>0, n=123... 4)

(i) Trovare le condizioni sW(x) tale che il sistem& () abbia uno stato fondamentale di
energia esattamente nullpél) (x). Dimostrare che in questo caso lo stato fondamen-
tale del sistemal (® ha I'energia positiva. Dimostrare che la funziongx) & data
in termini di l]J(ll) (x) da:

ey
W(x) = — : (5)
%
(iii) Dimostrare, sempre sotto la stessa ipotesi, che
EY =o; Er%r)l —E? n=123...: (6)

in altre parole, che tutti i livelli energetici sono identitei due sistemi, tranne lo
stato fondamentale ¢V, (Fig. 1)

(iv) Prendiamo comel ) |a buca unidimensionale di altezza infinita,

2 ) x<0,x>a
HO = P~ +v@ (x), V<1)(X) = 5 , ’ (7)

dove il potenziale costante nell'intervallo<Ox < a & scelto negativo (anziché 0) di
modo che I'energia dello stato fondamentale sia esatanmerifee Lo spettro del
sistema @ infatti semplicemente

e _ TR
" 7 2ma?

(nP—1), n=123.... (8)

Facendo uso delle (3),(5), e (7), trovare il potenzi&l® (x) del sistema compagno

che ha lo spettr&,? = E,(i)l, e farne uno schizzo.



n=3 n=2

n=2 n=1

n=1

H® H®

Figura 1:

Problema 2. Un atomo diidrogeno & in uno statori= 2.

(i) Dire quali sono I'energia e la degenerazione degli stati €2, tenendo conto anche
dello spin dell’elettrone (ma non del protone);

(i) Supponiamo che I'Hamiltoniana sia modificata da un termggguntivo del tipo “spin-
orbita”
H =AL-s, 9)

dove A & una costante. Calcolare i livelli energetici, le degarieni e i numeri
guantici conservati, corrispondenti agli stati del purifo (

(iii) Supponiamo, invece, che I'atomo sia sottoposto ad un canggmetico esterno de-
bole, omogeneo e staticB,= (0,0,B). E noto che 'Hamiltoniana in questo caso e
approssimativamente

2
p>? & eh
2m r 2mc( +29) (10)
(effetto Zeeman). In quanti sottolivelli si divide il liMel n = 2? Quali sono le
energie, i numeri quantici e la degenerazione di ciascunsatelivelli?

(iv) Supponiamo che I'atomo di idrogeno, senza il campo esterrsgnza I'interazione
(9), si trovi inizialmente nello statm = 2, (J,J;) = (%,%) e di parita negativa.
All'istante t = 0, si accende il campo magnetico di cui al punto (iii). Dir@aljgono
i valori possibili di(J,J,) all'istantet e calcolare relative probabilita.

Nota sui Punteggi
| punti saranno distribuiti come: 3,5,4,3 rispettivamepéz le domande (i)-(iv) del
Problema 1; 4,4,4,3 per le domande (i)-(iv) del Problema 2.

1Considerare la parita instrinseca dell'elettrone pessiti



Soluzione
Problema 1.
(i)
E\Y = (nH®|n) = (n|ATAln) = || Aln)||2 > 0. (11)

Dimostrazione analoga pEﬁz).

(ii) Da (i) segue che per I'esistenza di uno stat& dt 0 & necessario e sufficiente che sia
soddisfatta
h d (1)

Jamax +W(X) 1 (x) =0 (12)

da unafunzionw(ll) (x) normalizzabile. Visto che

AP =0, |

PV (x) = e FBW00 D () (13)

la condizione che essa sia normalizzabile &:

X
/ dxW(x) — +oo, X — too, (14)
0
di modo che 1
e B Wi Oy)  x— e (15)

Se questa condizione é soddisfatta, la soluzione deligique per il sistemé&2)

Afpi? (x) =0, (16)
P2 (x) = e T ESW00 2 ) (17)

non puo certo essere normalizzabile. La relazione (5\véaonista la (12).

(iii) Dati gli autosati dH®,
HO g =P wi?, (18)

si ha
H@ AL — AaTApY = AHO P — g, Ap, (19)

tranne pen =1 (per il qualeA lpﬁl) = 0). Percio

2 1 1
= —==Au, =12 (20)
En+l
EV =g, n=12... (21)

(iv) Lafunzione d’onda dello stato fondamentale della buca &

@5 = /2 5in ™
P (X) = \/;sm 3 (22)
Dalla (5) si trova che .
T TIX
W(X) = ———— — cot—. 23



Figura 2:

R @, Tx h ® 1
W(x)?=_——cof —; W(x)=—— 75 (24)
2ma a v2m %
Per consistenza,
R h? 2 TIX 1 R T2
V) =W (X) - —W/(X) = — — [cof — — ——]=—— =, (25
00 =W — =W/ = 0 S [eof T - o = g (29)
come ci si aspetta. |l potenziale richiest® & invece non banale:
h R? 1@ 1+ cog
VO x) =W2(X) + —W(X) = -— 5 ———=2, 0<x<a, (26)
V2m 2ma? 1—cog I
VA (x)=w, x<0, x>a (27)
Problema 2.
(i) 2
Er=——- d=2-4=38. 28
2= gy’ (28)

(i)

(iii)

L =1,0. In termini di stati di momento angolare totales %, (quattro stati), e due
doppietti diJ = 3.

2_12_
L.g:#_ (29)

J, L2, 2 commutano cot. Le degenerazione di ogni livello & dovutd,a

| quattro stati diJ,L,s) = (3,1, 3) ha 'energieE, + 5;
i due stati di(J,L,s) = (3,1, 3) ha l'energiaE, — A
i due stati di(J,L,s) = (3,0, 3) ha I'energiaEs.

eh
AH = ~ome (Lz+2s,)B. (30)

Percid in questo caso, i numeri quantici buoni stRoL,, & es,. Il livello n= 2 si
divide in cinque sottolivelli. Le energie sono

E=E+28"8 (singolo), [L=1,L,=-1,5,=-37;

2mc
E=Ez+ £ (doppio), [L=1,L;=0,5,=-3]e[L=0,L,=0,5,=—3];
E =Ez (doppio), L=1L,=1s5=-3le[L=1L,=-15=3]
E=E— 8 (doppio),[L=1,,=0,5=3]e[L=0,L,=0,5=1];

E=E,—28"8 (singolo), [L=1,L,=1,5=1].

2mc

4



L] L | s |AE(inunitadig®
111 [+2 -2
1] 1|3 0
110 [+3 -1
1] 0]-3 +1
1]-1]+3 0
1]-1]-3 +2
0] 0 [+3 -1
0] 0|3 +1
Tabella 1:

(iv)

23 = Lron-irom
- \/§|1,1>|l>eiAEt/ﬁ\/gu,om, (31)

dove nella seconda riga abbiamo trascurato la fase glabafe!/. e
AE=——— (32)

dal punto (iii). Riesprimendo (31) in termini di stati di memto angolare totale, si

ha
B \/’ 131, \[|1 .est\/’ 231, [111,
B 3122/ 7V3/22 31227 V3/22

ieBt, 3 1 2 1 ieB
= — —e2mc ) |—. — — 4+ —e2me
V72 ieBt 8 . ,eBt
2 1 e |2 1 eBt 8 ., eBt
P%%:‘(é‘f':—))emc) —5(5+4003m)—1—§s| m (35)




