
Appello di Meccanica Quantistica I

Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,
13 gennaio 2005 (A.A. 04/05)

N.B. Chi desidera recuperare il Compitino I del 15 nov. deve risolvere il Problema 1. Il tempo
disponibile è 2.5 ore. Chi desidera il recupero solo del Compitino II del 21 dic. deve risolvere il
Problema 2. Il tempo disponibile: 2.5 ore. Per Appello I, il tempo disponibile è di 4 ore.

Problema 1. Una coppia di sistemi unidimensionali che hanno gli spettriidentici tranne

lo stato fondamentale, può essere costruita come segue. Introdurremo due operatori

A =
i p√
2m

+W(x), A† = − i p√
2m

+W(x), (1)

dove p è l’operatore dell’impulso,W (x) è una funzione reale. Le Hamiltoniane dei due
sistemi sono allora date da

H(1) = A† A =
p2

2m
+V (1)(x), H(2) = AA† =

p2

2m
+V (2)(x), (2)

dove

V (1)(x) = W 2(x)− h̄√
2m

W ′(x), V (2)(x) = W 2(x)+
h̄√
2m

W ′(x). (3)

(i) Supponiamo che|W (x)| → ∞ a x → ±∞. Si dimostri che gli autostati di energia
soddisfano

E(1)
n ≥ 0; E(2)

n ≥ 0, n = 1,2,3, . . . . (4)

(ii) Trovare le condizioni suW (x) tale che il sistemaH(1) abbia uno stato fondamentale di

energia esattamente nulla,ψ(1)
1 (x). Dimostrare che in questo caso lo stato fondamen-

tale del sistemaH(2) ha l’energia positiva. Dimostrare che la funzioneW (x) è data

in termini diψ(1)
1 (x) da:

W (x) = − h̄√
2m

ψ(1) ′
1 (x)

ψ(1)
1 (x)

. (5)

(iii) Dimostrare, sempre sotto la stessa ipotesi, che

E(1)
1 = 0; E(1)

n+1 = E(2)
n , n = 1,2,3, . . . : (6)

in altre parole, che tutti i livelli energetici sono identici nei due sistemi, tranne lo
stato fondamentale diH(1). (Fig. 1)

(iv) Prendiamo comeH(1) la buca unidimensionale di altezza infinita,

H(1) =
p2

2m
+V (1)(x), V (1)(x) =

{

∞ x < 0, x > a,

− π2 h̄2

2ma2 , 0≤ x ≤ a,
(7)

dove il potenziale costante nell’intervallo 0≤ x ≤ a è scelto negativo (anziché 0) di
modo che l’energia dello stato fondamentale sia esatamentenulla. Lo spettro del
sistema è infatti semplicemente

E(1)
n =

π2 h̄2

2ma2 (n2−1), n = 1,2,3, . . . . (8)

Facendo uso delle (3),(5), e (7), trovare il potenzialeV (2)(x) del sistema compagno

che ha lo spettroE(2)
n = E(1)

n+1, e farne uno schizzo.
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Figura 1:

Problema 2. Un atomo di idrogeno è in uno stato din = 2.

(i) Dire quali sono l’energia e la degenerazione degli stati din = 2, tenendo conto anche
dello spin dell’elettrone (ma non del protone);

(ii) Supponiamo che l’Hamiltoniana sia modificata da un termine aggiuntivo del tipo “spin-
orbita”

H ′ = AL · s, (9)

doveA è una costante. Calcolare i livelli energetici, le degenerazioni e i numeri
quantici conservati, corrispondenti agli stati del punto (i).

(iii) Supponiamo, invece, che l’atomo sia sottoposto ad un campo magnetico esterno de-
bole, omogeneo e statico,B = (0,0,B). È noto che l’Hamiltoniana in questo caso è
approssimativamente

H =
p2

2m
− e2

r
− e h̄

2mc
(L+2s) ·B (10)

(effetto Zeeman). In quanti sottolivelli si divide il livello n = 2? Quali sono le
energie, i numeri quantici e la degenerazione di ciascuno dei sottolivelli?

(iv) Supponiamo che l’atomo di idrogeno, senza il campo esterno,e senza l’interazione
(9), si trovi inizialmente nello stato,n = 2, (J,Jz) = (1

2, 1
2) e di parità negativa.1

All’istante t = 0, si accende il campo magnetico di cui al punto (iii). Dire quali sono
i valori possibili di(J,Jz) all’istantet e calcolare relative probabilità.

Nota sui Punteggi
I punti saranno distribuiti come: 3,5,4,3 rispettivamenteper le domande (i)-(iv) del

Problema 1; 4,4,4,3 per le domande (i)-(iv) del Problema 2.

1Considerare la parità instrinseca dell’elettrone positiva.
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Soluzione

Problema 1.

(i)
E(1)

n = 〈n|H(1)|n〉 = 〈n|A† A|n〉 = ||A|n〉||2 ≥ 0. (11)

Dimostrazione analoga perE(2)
n .

(ii) Da (i) segue che per l’esistenza di uno stato diE = 0 è necessario e sufficiente che sia
soddisfatta

Aψ(1)
1 (x) = 0, [

h̄√
2m

d
d x

+W(x) ]ψ(1)
1 (x) = 0 (12)

da una funzioneψ(1)
1 (x) normalizzabile. Visto che

ψ(1)
1 (x) = e−

√
2m
h̄

R x
0 dxW (x) ψ(1)

1 (0) (13)

la condizione che essa sia normalizzabile è:
Z x

0
dxW (x) → +∞, x →±∞, (14)

di modo che

e−
√

2m
h̄

R x
0 dxW (x) < O(

1
|x| ), x →±∞. (15)

Se questa condizione è soddisfatta, la soluzione dell’equazione per il sistema(2)

A†ψ(2)
1 (x) = 0, (16)

ψ(2)
1 (x) = e+

√
2m
h̄

R x
0 dxW (x) ψ(2)

1 (0) (17)

non può certo essere normalizzabile. La relazione (5) è ovvia vista la (12).

(iii) Dati gli autosati diH(1),

H(1) ψ(1)
n = E(1)

n ψ(1)
n , (18)

si ha
H(2) A ψ(1)

n = AA† Aψ(1)
n = AH(1) ψ(1)

n = En Aψ(1)
n , (19)

tranne pern = 1 (per il qualeA ψ(1)
n = 0). Perciò

ψ(2)
n =

1
√

E(1)
n+1

Aψ(1)
n+1, n = 1,2, . . . . (20)

E(2)
n = E(1)

n+1, n = 1,2, . . . . (21)

(iv) La funzione d’onda dello stato fondamentale della buca è

ψ(1)
1 (x) =

√

2
a

sin
πx
a

(22)

Dalla (5) si trova che

W (x) = − h̄√
2m

π
a

cot
πx
a

. (23)

3



0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

Figura 2:

W (x)2 =
h̄2

2m
π2

a2 cot2
πx
a

; W ′(x) =
h̄√
2m

π2

a2

1

sin2 πx
a

. (24)

Per consistenza,

V (1)(x) = W 2(x)− h̄√
2m

W ′(x) =
h̄2

2m
π2

a2 [cot2
πx
a

− 1

sin2 πx
a

] = − h̄2

2m
π2

a2 , (25)

come ci si aspetta. Il potenziale richiestoV (2) è invece non banale:

V (2)(x) = W 2(x)+
h̄√
2m

W ′(x) =
h̄2

2m
π2

a2

1+cos2 πx
a

1−cos2 πx
a

, 0≤ x ≤ a, (26)

V (2)(x) = ∞, x < 0, x > a. (27)

Problema 2.

(i)

E2 = − e2

8rB
, d = 2 ·4 = 8. (28)

L = 1,0. In termini di stati di momento angolare totale,J = 3
2, (quattro stati), e due

doppietti diJ = 1
2.

(ii)

L · s =
J2−L2− s2

2
. (29)

J, L2, s2 commutano conH. Le degenerazione di ogni livello è dovuta aJz.

I quattro stati di(J,L,s) = (3
2,1, 1

2) ha l’energiaE2 + A
2 ;

i due stati di(J,L,s) = (1
2,1, 1

2) ha l’energiaE2−A;

i due stati di(J,L,s) = (1
2,0, 1

2) ha l’energiaE2.

(iii)

∆H = − e h̄
2mc

(Lz +2sz)B. (30)

Perciò in questo caso, i numeri quantici buoni sonoL2, Lz, s2 e sz. Il livello n = 2 si
divide in cinque sottolivelli. Le energie sono

E = E2 +2 e h̄B
2mc (singolo), [L = 1,Lz = −1,sz = − 1

2 ];

E = E2 + e h̄B
2mc (doppio), [L = 1,Lz = 0,sz = − 1

2 ] e [ L = 0,Lz = 0,sz = − 1
2 ];

E = E2 (doppio), [L = 1,Lz = 1,sz = − 1
2] e [ L = 1,Lz = −1,sz = 1

2 ];

E = E2− e h̄B
2mc (doppio), [L = 1,Lz = 0,sz = 1

2 ] e [ L = 0,Lz = 0,sz = 1
2 ];

E = E2−2 e h̄B
2mc (singolo), [L = 1,Lz = 1,sz = 1

2 ].
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L Lz sz ∆E (in unità di e h̄B
2mc )

1 1 + 1
2 −2

1 1 − 1
2 0

1 0 + 1
2 −1

1 0 − 1
2 +1

1 −1 + 1
2 0

1 −1 − 1
2 +2

0 0 + 1
2 −1

0 0 − 1
2 +1

Tabella 1:

(iv)

|1
2
,
1
2
〉 =

√

2
3
|1,1〉 |↓〉−

√

1
3
|1,0〉 |↑〉

→
√

2
3
|1,1〉 |↓〉− e−i∆Et/h̄

√

1
3
|1,0〉 |↑〉, (31)

dove nella seconda riga abbiamo trascurato la fase globale,e−iE2 t/h̄, e

∆E = − e h̄B
2mc

(32)

dal punto (iii). Riesprimendo (31) in termini di stati di momento angolare totale, si
ha

=

√

2
3

[

√

1
3
|3
2
,
1
2
〉+

√

2
3
|1
2
,
1
2
〉 ]− e

i eBt
2mc

√

1
3

[

√

2
3
|3
2
,
1
2
〉−

√

1
3
|1
2
,
1
2
〉 ]

=

√
2

3
(1− e

i eBt
2mc ) |3

2
,
1
2
〉+(

2
3

+
1
3

e
i eBt
2mc ) |1

2
,
1
2
〉. (33)

P3
2 , 1

2
=

∣

∣

∣

∣

∣

√
2

3
(1− e

i eBt
2mc )

∣

∣

∣

∣

∣

2

=
8
9

sin2 eBt
4mc

; (34)

P1
2 , 1

2
=

∣

∣

∣

∣

(
2
3

+
1
3

e
i eBt
2mc )

∣

∣

∣

∣

2

=
1
9

(5+4 cos
eBt
2mc

) = 1− 8
9

sin2 eBt
4mc

. (35)
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