
Prova Scritta di Meccanica Quantistica II
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Tempo a disposizione: 3 ore

Problema 1.

Il nucleo dell’atomo di deuterio è il deutone (un nucleo composto da un protone e un neutrone), con carica

+1 e con un quadrupolo elettrico non nullo. Dovuto a quest’ultimo il potenziale per l’elettrone contiene un

termine perturbativo:

V (r) = −e2

r
+V ′, V ′ = c

r2−3z2

r5 (1)

dovec è una costante molto piccola.

(i) Discutere qual’è la grandezza naturale dic, e dire rispetto a quale quantitàc è piccolo.

(ii) Esaminare le correzioni all’energia dello stato fondamentale del deuterio, al primo ordine inV ′.

(iii) Elencare tutti gli elementi di matrice non nulli diV ′ tra gli stati nonperturbati din = 3, e dire in quanti

sottolivelli si divide il livello n = 3, senza fare il calcolo esplicito delle correzioni.

(iv) Calcolare la correzione (non nulla) di energia di uno dei sottolivelli, a scelta.

Problema 2.

Una particella è legata al potenziale delta unidimensiale, V (x) = −gδ(x), con1

ψ0(x) =
√

κe−κ|x| , κ =
mg

h̄2 ; E0 = −mg2

2h̄2 . (2)

All’istante t = 0 si accende una perturbazione debole,

H ′ = 2λx cosωt, (3)

doveλ è una costante.

(i) Calcolare la probabilità di ionizzazione per un intervallo unitario di tempo (il rate di transizione), in teoria

delle perturbazioni al primo ordine. Approssimate lo statofinale con un’onda pianaψ f (x) = exp±ikx

(un’approssimazione che a posteriori risulta esatta per leperturbazioni (3)).

(ii) Con l’approssimazione conψ f (x) = exp±ikx si trova che il rate di transitzioni risulta non nullo anche

per un operatore banale,

H ′′ = cost. cosωt. (4)

Spiegare in che consiste l’errore, e discutere come correggerlo (non è necessario completare il calcolo

“corretto”).

1Non è necessario riprodurre il risultato, (2).
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Formulario

Alcune integrali con funzioni radiali dell’atomo di idrogeno

Z ∞

0
dr r−1R3,ℓ(r)R3,ℓ′(r) = cℓ,ℓ′ r

−3
B , (5)

rB ≡ h̄2/me2 è il raggio di Bohr, e il coefficientecℓ,ℓ′ è dato da:

(ℓ,ℓ′) (2,2) (2,1) (2,0) (1,1) (1,0)

cℓ,ℓ′
1

405
1

243
√

5
0 1

81
4
√

2
243

Armoniche sferiche

Y0,0 =
1√
4π

,

Y1,0 =
√

3
4π cosθ, Y2,0 =

√

5
16π (3cos2 θ−1),

Y1,±1 = ∓
√

3
8π sinθe±iφ, Y2,±1 = ∓

√

15
8π cosθ sinθe±iφ,

Y2,±2 =
√

15
32π sin2 θe±2iφ, (6)

Altri integrali utili

I =

Z 1

0
dx f (x)(1−3x2) (7)

f (x) (1− x2)2 x2(1− x2) (1−3x2)2 x4 1− x2 x2 1−3x2

I 32
105 − 4

105 − 16
35 − 8

35
4
15 − 4

15
4
5

Regola di Fermi

dWf i =
2π
h̄
|Ff i|2 δ(E f −Ei − h̄ω)dΦ . (8)

Densità di stati: per una particella libera unidimensionale, ψ = eipx/h̄

dΦ =
d p
2πh̄

·2 (il fattore 2 per le due direzioni) (9)
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Soluzione

Problema 1.

i) Il quadrupolo elettrico è dovuto alla distribuzione nonsfericamente simmetrica della carica elettrica dentro

il nucleo: è dell’ordine della dimensione del nucleo stesso,

c ∼ e2 r2
nucleo ≪ e2 r2

B , (10)

di circa un fattore 10−8 ≃ 10−10 più piccolo rispetto ae2 r2
B.

ii) H ′ è un tensore sferico di rango 2: la correzione al primo ordine

〈100|H ′|100〉 (11)

si anulla a causa del teorema di Wigner-Eckart.

iii) A n = 3 ci sono stati conℓ = 2,1,0. Usando il teorema di Wigner-Eckart, la conservazione di parità, e

del fatto cheV ′ commuta conLz, si ha che gli elementi a priori non nulli sono:

〈32m|H ′|32m〉, (m = 2,1,0,−1,−2), 〈300|H ′|320〉, 〈320|H ′|300〉, (12)

〈31m|H ′|31m〉, (m = 1,0,−1). (13)

In verità, gli elementi nondiagonali si annullano perchél’integrale radiale rilevante è nullo. Inoltre

〈32m|H ′|32m〉 = 〈32−m|H ′|32−m〉, 〈31m|H ′|31m〉 = 〈31−m|H ′|31−m〉. (14)

Le correzioni all’energia sono date, al primo ordine, semplicemente dagli elementi diagonali soprae-

lencati; il livello si divide in 6 sottolivelli.

iv) Visto che
Z

dr
r

R3,2R3,0 = 0, (15)

H ′ è diagonale in questa base. Le correzioni sono date semplicemente da:

∆E(32±2) =
c

r3
B

Z

dr
r

R2
3,2

Z

Y ∗
2,2(1−3cos2 θ)Y2,2

=
c

r3
B

· 1
405

· 15
32π

·2π ·2 ·
Z 1

0
dz(1−3z2)(1− z2)2

=
c

r3
B

· 1
405

· 15
32π

·2π ·2 · 32
105

=
4c

2835r3
B

. (16)

∆E(32±1) =
c

r3
B

Z

dr
r

R2
3,2

Z

Y ∗
2,1(1−3cos2 θ)Y2,1

=
c

r3
B

· 1
405

· 15
8π

·2π ·2 ·
Z 1

0
dz(1−3z2)(1− z2)z2

=
c

r3
B

· 1
405

· 15
8π

·2π ·2 ·
(

− 4
105

)

= − 2c

2835r3
B

. (17)
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∆E(320) =
c

r3
B

Z

dr
r

R2
3,2

Z

Y ∗
2,0(1−3cos2 θ)Y2,0

=
c

r3
B

· 1
405

· 5
16π

·2π ·2 ·
Z 1

0
dz(1−3z2)3

=
c

r3
B

· 1
405

· 5
16π

·2π ·2 ·
(

−16
35

)

= − 4c

2835r3
B

. (18)

∆E(31±1) =
c

r3
B

Z

dr
r

R2
3,1

Z

Y ∗
1,1(1−3cos2 θ)Y1,1

=
c

r3
B

· 1
81

· 3
8π

·2π ·2 ·
Z 1

0
dz(1−3z2)(1− z2)

=
c

r3
B

· 1
81

· 3
8π

·2π ·2 · 4
15

=
2c

405r3
B

. (19)

∆E(310) = cr3
B

Z

drrR2
3,1

Z

Y ∗
1,0(1−3cos2 θ)Y1,0

=
c

r3
B

· 1
81

· 3
4π

·2π ·2 ·
Z 1

0
dz(1−3z2)z2

=
c

r3
B

· 1
81

· 3
4π

·2π ·2 ·
(

− 4
15

)

= − 4c

405r3
B

. (20)

Lo stato|3,0,0〉 rimane imperturbato. Il livellon = 3 si divide in sei sottolivelli.

Problema 2.

V ′ = λx [e−iωt + h.c.] (21)

dΦ =
1

2πh̄
m
p

2dE =
m

πh̄p
dE ≡ ρ(E)dE, ρ(E) =

m
πh̄p

. (22)

ψk(x) = eikx, (23)

Ff i = 〈ψk|λx |ψ0〉 = λ
√

κ
Z ∞

−∞
dxxe−ikxe−κ|x| = λ

√
κ

−4iκk
(κ2 + k2)2 ; (24)

|Ff i|2 =
16λ2k2 κ3

(κ2 + k2)4 (25)

w =
2π
h̄
|Ff i|2 ·

m
πh̄p

|
p=
√

2m(E0+ωh̄)

=
2m

h̄3

16λ2k κ3

(κ2 + k2)4 , k =
p
h̄

=

√

2m(E0 + ωh̄)

h̄
. (26)
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Le funzioni d’ondaψ f (x) = exp±ikx non sono corrette in quanto non sono ortogonali allo stato legato

(o più semplicemente, non soddisfano l’equazione di Schr¨odinger attorno ax = 0.) È necessario costruire la

corretta funzione d’onda nel continuo, che ha forma

ψright = eikx + Ae−ikx, x < 0, Beikx, x > 0, (27)

e analogamente per lo stato “leftmover”. Si trovano

A = − 1
1+ ik/κ

, B = A +1=
ikκ

1+ ik/κ
. (28)

Si possono verficare che nel caso di potenziale∼ xn conn intero dispari l’uso delle onde pianee±ikx danno il

risultato esatto (al primo ordine); nel caso di potenziali pari (come nel caso di potenziale costante) il risultato

è errato, per termini dell’ordine diκ2/k2 ak ≫ κ.
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