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2 marzo 2011 (A.A. 10/11)

Tempo a disposizione: 3 ore e mezzo

Problema 1.

Una particella di massa m e con carica elettrica q si muove in una dimensione, sottoposta ad
un campo elettrico uniforme e costante E . Scrivere l’equazione di Schrödinger (indipendente dal
tempo), e risolverla nella rappresentazione dell’impulso, i.e., per la funzione d’onda ψ̃(p).

Problema 2.

Un fascio di atomi con spin 1
2 , carica q e con il momento magnetico ~µ =

∣∣ qg
2mc

∣∣ s, viene fatto
attraversare un apparato à la Stern-Gerlach, con il campo magnetico (inomogeneo) nella direzione
(Fig.1)

n = (sin θ cosφ, sin θ sinφ, cos θ).

Come è noto, il fascio si divide in due sottofasci a e b.

(i) Le intensità relative tra i due fasci a e b risultano essere 1 : 1 (che si può verificare, facendo
incidere i due fasci su uno schermo fotografico, Fig. 2). Dire se si può concludere, avendo solo
questi dati, se lo stato iniziale di spin degli atomi era puro o misto. Rispondete con un S̀ı (in
questo caso, quale?) o un No.

(ii) In un caso o nell’altro (puro o misto), trovare una descrizione possibile dello stato iniziale (o
con una funzione d’onda di spin nel caso puro, o con una matrice densità nel caso misto),
compatibile con i dati sperimentali.

(iii) Viene tolto lo schermo di cui al punto (i) e con un blocco posto davanti al fascio b viene estratto
il fascio a che corrisponde allo spin “up” nella direzione di n, Fig. 1. Descrivere lo stato di
questi atomi, i.e., trovare la funzione d’onda di spin, ψn, tale che s · nψn = 1

2ψn.

(iv) Trovare gli angoli di Eulero α, β, γ opportuni per ruotare gli assi delle coordinate di modo che
il nuovo asse z positivo coincide con la direzione del versore n.

(v) Calcolare la matrice di rotazione R,

R = eiszγ eisyβ eiszα , (1)

e di conseguenza determinare
R |ψn〉 . (2)

Discutere il risultato.
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Problema 3.

Un nucleo in uno stato eccitato di energia E1, compie una transizione elettromagnetica e decade
allo stato fondamentale, E0, emettendo un fotone. Sia M la massa del nucleo. Se il nucleo fosse
infinitamente massivo (M =∞) il fotone emesso avrebbe l’energia e l’impulso

Eγ = hν = E1 − E0 = F ; pγ = Eγ/c . (3)

(i) A causa della massa finita (M < ∞), il nucleo rinculerà al momento dell’emissione del fotone.
Tenendo conto della conservazione dell’impulso e dell’energia, trovare l’energia del fotone Eγ
emesso dal nucleo, a riposo.

(ii) Supponiamo, invece, che il nucleo (sempre nello stato interno eccitato E1) sia legato ad un
centro di forza di richiamo descritto dal potenziale armonico,

H =
p2

2M
+
MΩ2r2

2
, (4)

e che si trovi nello stato fondamentale di (4). Dire quali sono i valori possibili dell’energia
del fotone emesso nella transizione interna del nucleo. In particolare, qual’è il valore massimo
possibile dell’energia del fotone?

(iii) Assumendo che lo stato del nucleo sia dato, immediatamente dopo l’emissione del fotone (nella
direzione di ẑ), da

|Ψ〉 = e−ipγz/~ |0〉 , (5)

dove |0〉 indica lo stato fondamentale dell’oscillatore (4) e pγ l’impulso del fotone, determinare le
intensità relative per i vari valori dell’energia hν = pγc del fotone emesso. In particolare qual’è
la probabilità che il fotone emesso abbia l’energia massima di cui al punto (ii)? Discutere perché
la formula (5) può essere una buona approssimazione per lo stato del nucleo immediatamente
dopo l’emissione del fotone.

Nota: Nei punti (ii) e (iii), trascurate la piccola modifica della massa del nucleo, dovuta all’emissione
del fotone.

Formulario

(i) La formula di Weyl,

eXeY = eX+Y+
1
2 [X,Y ] (6)

è valida per due operatori che hanno un commutatore [X,Y ] che è un operatore c-numero.

(ii) La relazione tra x, p e gli operatori di creazione e di annichilazione in un oscillatore unidimen-
sionale:

a =
√
mω

2~
x+ i

√
1

2mω~
p , a† =

√
mω

2~
x− i

√
1

2mω~
p , (7)
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SOLUZIONE

Problema 1.

Il potenziale è dato da −qEx. L’Hamiltoniana è

H =
p2

2m
− qE x . (8)

L’equazione di Schrödinger nella rappresentazione dell’impulso è (x̂ = i~ ∂
∂p )

Hψ̃(p) = E ψ̃(p), H = −iqE~ ∂

∂p
+

p2

2m
. (9)

Risolvendo l’equazione (
∂

∂p
+

i p2

2mqE~
− iE

qE~

)
ψ̃(p) = 0, (10)

si ha
ψ̃(p) =

1√
2πqE~

e−i
p3

6mqE~ +i EpqE~ (11)

dove è stata usata la normalizzazione,∫
dp ψ̃E(p)∗ψ̃E′(p) = δ(E − E′). (12)

Problema 2.

(i) No.

(ii) Uno stato puro che dà il detto risultato sperimentale è uno stato di spin in una direzione
qualsiasi, nel piano perpendicolare a n. Per esempio, si può prendere lo spin nella direzione
(θ + π

2 , φ) (se 0 < θ < π/2)

|ψ〉 =

(
e−iφ/2cos[(θ + π

2 )/2]
eiφ/2sin[(θ + π

2 )/2]

)
=

1√
2

(
e−iφ/2[cos θ2 − sin θ

2 ]
eiφ/2[sin θ

2 + cos θ2 ]

)
(13)

Quando lo spinsi trova in |ψ〉, la probabilità di trovarlo “up” nella direzione di n, i.e., nello
stato

|ψn〉 =

(
e−iφ/2 cos θ2
eiφ/2 sin θ

2

)
, (14)

è infatti uguale a

|〈ψn|ψ〉|2 =
1
2

[
cos

θ

2
(cos

θ

2
− sin

θ

2
) + sin

θ

2
(sin

θ

2
+ cos

θ

2
)
]2

=
1
2
. (15)

Nel caso di uno stato misto, basta prendere lo stato non-polarizzato, con la matrice densità,

ρ =
1
2

(
1 0
0 1

)
; (16)
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in questo caso la relativa intensità del fascio a è

Tr [ ρ |ψn〉〈ψn| ] =
1
2

Tr

[
ρ

(
cos2 θ

2 e−iφ cos θ2 sin θ
2

eiφ cos θ2 sin θ
2 sin2 θ

2

)]
=

1
2
. (17)

(iii)

|ψn〉 =

(
e−iφ/2 cos θ2
eiφ/2 sin θ

2

)
(18)

(iv) Prendendo gli angoli di Eulero come (1) una rotazione attorno all’asse z, (2) una rotazione
attorno al nuovo asse y, e successivamente (3) una rotazione attorno al nuovo asse z, gli angoli
richiesti sono, in ordine,

φ, θ, γ. (19)

Chiaramente una volta portato l’asse z nella direzione n con le due rotazioni φ, θ, l’ultima
rotazione (attorno a n) non cambia l’asse ẑ = n, perciò il terzo angolo γ è indeterminato.

(v) Prendendo γ = 0, la matrice di rotazione è data da

R = Uy(θ)Uz(φ) = eiθσy/2eiφσz/2 =

(
cos θ2 sin θ

2

− sin θ
2 cos θ2

) (
eiφ/2 0

0 e−iφ/2

)
=

=

(
eiφ/2 cos θ2 e−iφ/2 sin θ

2

−eiφ/2 sin θ
2 e−iφ/2 cos θ2

)
, (20)

quindi

R |ψn〉 =

(
1
0

)
. (21)

Discussione: Il risultato è quello che ci si aspettava poiché nel nuovo sistema di coordinate
n corrisponde all’asse z e lo spin è nell’autostato di σ · n. Un’ulteriore rotazione di angolo γ
semplicemente modifica la fase inosservabile della funzione d’onda.

Problema 3.

(i) Un fotone di energia Eγ = pγc = hν porta l’impulso pγ = hν/c = h/λ. La conservazione
dell’impulso e dell’energia dà

F =
p2
γ

2M
+ pγc, (22)

dove abbiamo posto che PNucleo = −pγ . Risolvendo per pγ , si ha

pγ = −Mc+
√
M2c2 + 2MF, (23)

Eγ = pγc = −Mc2 +
√
M2c4 + 2Mc2F ' F − F 2

2Mc2
+ . . . . (24)

Per dimostrare che Eγ < F , (scrivendo c = 1)

F − Eγ = F +M −M(1 +
2F
M

)1/2. (25)
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Visto che
(F +M)2 − [M(1 +

2F
M

)1/2]2 = F 2 > 0, (26)

segue che
Eγ < F, (27)

come ci si aspetta dovuto all’effetto del rinculo.

(ii) In questo caso, il nucleo è legato ad un potenziale; l’impulso non si conserva. La conservazione
dell’energia continua ad essere valida, ma visto che le energie del nucleo possibili sono

Ω~N, N = 0, 1, 2, . . . , (28)

rispetto allo stato iniziale, lo spettro dell’energia del fotone è discreto; esso può avere

E(N)
γ = F − Ω~N, N = 0, 1, 2, . . . ,

[
F

Ω~

]
. (29)

l’energia massima che il fotone può avere è esattamente F , in questo caso senza l’effetto del
rinculo.

(iii)

z =

√
~

2MΩ
(a+ a†), (30)

perciò

eipγz/~ = exp
i pγ√
2MΩ~

(a+ a†) = eX+Y = e−
1
2 [X,Y ] eXeY (31)

Nell’applicare la formula di Weyl, conviene portare a a destra, poiché si vuole calcolare la
probabilità,

P
(N)
Eγ

= |〈N |eipγz/~|0〉|2 . (32)

Identificando
X = C a†, Y = C a, C ≡ i pγ√

2MΩ~
(33)

si ha
1
2

[X,Y ] =
p2
γ

4MΩ~
, (34)

quindi

eipγz/~ = eX+Y = e−
1
2 [X,Y ] eXeY = e−

p2
γ

4MΩ~ eC a
†
eC a. (35)

La probabilità per vari valori di E(N)
γ è allora

P
(N)
Eγ

= e−
p2
γ

2MΩ~ |〈N |eC a
†
eC a|0〉|2 = e−

p2
γ

2MΩ~ |〈N |eC a
†
|0〉|2 = e−

p2
γ

2MΩ~
|C|2N

N !
(36)

dove

|C|2 =
p2
γ

2MΩ~
, pγ =

Eγ
c

=
F − Ω~N

c
(37)

Visto che pγ e C dipendono da N la distribuzione (36) non è Poissoniana. La probabilità di
emissione senza il rinculo (Eγ = E

(0)
γ = F ) è allora

P = e−
p2
γ

2MΩ~ = e−
F2

2Mc2Ω~ . (38)
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Per quanto riguarda l’ultima domanda, se la funzione d’onda dello stato iniziale (in questo
caso, |0〉) è descritto da una funzione d’onda ψ̃(p) nella rappresentazione dell’impulso, lo stato
e−ipγz/~ |0〉 è semplicemente lo stato spostato in pz,

e−ipγz/~|z=i~∂/∂p ψ̃(p) = ψ̃(px, py, pz + pγ) . (39)

Questo corrisponde al nucleo che ha ricevuto l’impulso, (0, 0,−pγ), appunto, un effetto del
rinculo.

Oppure, se lo stato iniziale è descritto nella rappresentazione solita (delle coordinate) come
sovrapposizione delle onde piane

ψ0(r) =
∫
d3p ψ̃(p) eip·r/~, (40)

e−ipγz/~ψ0(r) =
∫
d3p ψ̃(p) ei[pxx+pyy+(pz−pγ)z]~ . (41)

Quindi si vede che ogni componente dell’impulso si sposta di (0, 0,−pγ).
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