Prova Scritta di Meccanica Quantistica I

Facolta di Scienze, M.F.N., Universita degli Studi di Pisa
2 marzo 2011 (A.A. 10/11)

Tempo a disposizione: 3 ore e mezzo

Problema 1.

Una particella di massa m e con carica elettrica ¢ si muove in una dimensione, sottoposta ad
un campo elettrico uniforme e costante £. Scrivere ’equazione di Schrédinger (indipendente dal

tempo), e risolverla nella rappresentazione dell’impulso, i.e., per la funzione d’onda ﬁ(p)

Problema 2.

Un fascio di atomi con spin %, carica ¢ e con il momento magnetico fi = |2‘117€c|s, viene fatto
attraversare un apparato a la Stern-Gerlach, con il campo magnetico (inomogeneo) nella direzione
(Fig.1)

n = (sin 6 cos ¢, sin f sin ¢, cos ).

Come & noto, il fascio si divide in due sottofasci a e b.

(i) Le intensita relative tra i due fasci a e b risultano essere 1 : 1 (che si puo verificare, facendo
incidere i due fasci su uno schermo fotografico, Fig. 2). Dire se si pud concludere, avendo solo
questi dati, se lo stato iniziale di spin degli atomi era puro o misto. Rispondete con un Si (in
questo caso, quale?) o un No.

(ii) In un caso o nell’altro (puro o misto), trovare una descrizione possibile dello stato iniziale (o
con una funzione d’onda di spin nel caso puro, o con una matrice densita nel caso misto),
compatibile con i dati sperimentali.

(iii) Viene tolto lo schermo di cui al punto (i) e con un blocco posto davanti al fascio b viene estratto
il fascio a che corrisponde allo spin “up” nella direzione di n, Fig. 1. Descrivere lo stato di
questi atomi, i.e., trovare la funzione d’onda di spin, ¥y, tale che s - nyy, = %wn.

(iv) Trovare gli angoli di Eulero «, 3,7 opportuni per ruotare gli assi delle coordinate di modo che
il nuovo asse z positivo coincide con la direzione del versore n.

(v) Calcolare la matrice di rotazione R,
R= eiszv eisyﬁ eisza, (1)

e di conseguenza determinare
R i) . (2)

Discutere il risultato.



Problema 3.

Un nucleo in uno stato eccitato di energia F;, compie una transizione elettromagnetica e decade
allo stato fondamentale, Ey, emettendo un fotone. Sia M la massa del nucleo. Se il nucleo fosse

infinitamente massivo (M = o) il fotone emesso avrebbe l’energia e I'impulso

E,=hv=E —Ey=F,; py=E,/c. (3)

(i) A causa della massa finita (M < c0), il nucleo rinculera al momento dell’emissione del fotone.
Tenendo conto della conservazione dell’impulso e dell’energia, trovare ’energia del fotone FE,

emesso dal nucleo, a riposo.

ii) Supponiamo, invece, che il nucleo (sempre nello stato interno eccitato Ep) sia legato ad un
pp ) ) p g

centro di forza di richiamo descritto dal potenziale armonico,

p? MO2r2

H=-—
o T T

(4)

e che si trovi nello stato fondamentale di (4). Dire quali sono i valori possibili dell’energia
del fotone emesso nella transizione interna del nucleo. In particolare, qual’e il valore massimo

possibile dell’energia del fotone?

(iii) Assumendo che lo stato del nucleo sia dato, immediatamente dopo 1’emissione del fotone (nella
direzione di %), da
) = e~ "*/"0), (5)

dove |0} indica lo stato fondamentale dell’oscillatore (4) e p., 'impulso del fotone, determinare le
intensita relative per i vari valori dell’energia hv = p-c del fotone emesso. In particolare qual’e
la probabilita che il fotone emesso abbia I’energia massima di cui al punto (ii)? Discutere perché
la formula (5) pud essere una buona approssimazione per lo stato del nucleo immediatamente

dopo 'emissione del fotone.

Nota: Nei punti (ii) e (i), trascurate la piccola modifica della massa del nucleo, dovuta all’emissione
del fotone.

Formulario

(i) La formula di Weyl,

1
XY — (XY H5[XY] (6)

¢ valida per due operatori che hanno un commutatore [X,Y] che & un operatore c-numero.

(ii) La relazione tra x,p e gli operatori di creazione e di annichilazione in un oscillatore unidimen-

Y LR - Y LD (7)
V2R TN 2mwn? TV 2n T amen?

sionale:
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SOLUZIONE

Problema 1.

Il potenziale & dato da —g€x. L’Hamiltoniana &

P
H:%—qé'x. (8)

L’equazione di Schrédinger nella rappresentazione dell’impulso & (& = iha%)

Hi(p) = E H = —igend + P~
¥(p) = E(p), iq€ a5 " 2m 9)
Risolvendo ’equazione
b i p? iE\ -
il = =0 10
( Sl qgh) J(p) =0, (10)
si ha ) X
h(p) = ——— o ioaEn Tigen 11
dove e stata usata la normalizzazione,
[ dvbew)y i) = 58 - B (12)

Problema 2.

(i) No.

ii) Uno stato puro che da il detto risultato sperimentale € uno stato di spin in una direzione
P P
qualsiasi, nel piano perpendicolare a n. Per esempio, si puo prendere lo spin nella direzione
0+ 5,0) (se 0< 0 <7/2)

_ e~"/2cos|(0 + /21y 1 €7i¢/2[cosg _gin g]
[v) = ( ei¢/2sin[(9—|— 2)/2] ) - E < 6i¢/2[sing 1 cos Q} ) (13)

2
Quando lo spinsi trova in |¢), la probabilita di trovarlo “up” nella direzione di n, i.e., nello

e~ /2 cos 2
|wn> = ( i/2 92 ) (14)
(& Sin 3

stato

e infatti uguale a

)]21. (15)

1 0 0 0 0 0 0
27 - -z @ 7 . 7 . 7 7
[{(n|P)|* = 3 [COSQ(COSQ s1n2)+sm2(sm2+0052

Nel caso di uno stato misto, basta prendere lo stato non-polarizzato, con la matrice densita,

30 1) (19



in questo caso la relativa intensita del fascio a &

1 cos?
ﬂ[ﬂ|¢n><wn|]:§ﬂ P ( ' cos ¢
2

(iii)
e 19/2 cog &
[Yn) = ( )2 92 (18)
e'?/%sin §
(iv) Prendendo gli angoli di Eulero come (1) una rotazione attorno all’asse z, (2) una rotazione

attorno al nuovo asse y, e successivamente (3) una rotazione attorno al nuovo asse z, gli angoli

richiesti sono, in ordine,
¢,0,7. (19)

Chiaramente una volta portato ’asse z nella direzione n con le due rotazioni ¢, 6, 'ultima

rotazione (attorno a n) non cambia ’asse Z = n, percio il terzo angolo « ¢ indeterminato.

(v) Prendendo v = 0, la matrice di rotazione ¢ data da

} ) ) ) ip/2 0
" o Cos sin e
R = %@wm=”“w¢p:< ¢ 3)( ww)z

—sing cosg 0

B et?/2 cos g e~19/2 gin g 20
N —e'?/2 gin g e~19/2 cog % ’ (20)

me=<;>. )

Discussione: Il risultato ¢ quello che ci si aspettava poiché nel nuovo sistema di coordinate

quindi

n corrisponde all’asse z e lo spin e nell’autostato di ¢ - n. Un’ulteriore rotazione di angolo ~

semplicemente modifica la fase inosservabile della funzione d’onda.

Problema 3.

(i) Un fotone di energia E, = pyc = hv porta impulso p, = hv/c = h/A. La conservazione
dell’impulso e dell’energia da

P2
F= ﬁ +p’Yca (22)
dove abbiamo posto che Pnycieo = —p~. Risolvendo per p,, si ha
py = —Mc+\/ M2c?+2MF, (23)
2 F?
E,=pyc=—-Mec +\/M2c4+2Mc2F:F—W+.... (24)
Per dimostrare che E, < F, (scrivendo ¢ = 1)
2F
F—E7=F+M—M(1+M)1/2. (25)



Visto che

2F
(F+M)*—[M(1+ M)W]Q =F%>0, (26)
segue che
E, <F, (27)

come ci si aspetta dovuto all’effetto del rinculo.

(ii) In questo caso, il nucleo & legato ad un potenziale; 'impulso non si conserva. La conservazione

dell’energia continua ad essere valida, ma visto che le energie del nucleo possibili sono
QAN, N=0,1,2,..., (28)

rispetto allo stato iniziale, lo spettro dell’energia del fotone e discreto; esso puo avere

F
EXN) = F — QhN, NO’1’2""’[95] : (29)

I’energia massima che il fotone puo avere € esattamente F', in questo caso senza l'effetto del

rinculo.
(iii)
(a+al), (30)

percio .
- _ipy (a+al) =X+ = o FIXY] X Y (31)

V2MQRh

Nell’applicare la formula di Weyl, conviene portare a a destra, poiché si vuole calcolare la

probabilita,
N Py 2
Py = |(N]e?=/"0) 2. (32)
Identificando .
X=Cdf, Y=Ca 0= (33)
2MQh
si ha )
1 D
~[X,Y] = 2 4
X V)= (31)
quindi
p2
P2/l = XY = =3 X Y] X oY — o—amrim Ca’Cat, (35)
La probabilita per vari valori di ESN) ¢ allora
»2 p2 »2 2N
P = emmim |(NeC @' € (02 = =zt | (V]eC ' |0)]? = G*Wh% (36)
dove )
p E F — QhN
CPP =2 =T=" 37
€] 2MQR’ Py =7 c (37)

Visto che p, e C dipendono da N la distribuzione (36) non ¢ Poissoniana. La probabilita di
emissione senza il rinculo (E, = Efyo) = F) ¢ allora

p? F2

_ Py —
P = e 2Marn = ¢ 2mcZan (38)




Per quanto riguarda l'ultima domanda, se la funzione d’onda dello stato iniziale (in questo
caso, |0)) & descritto da una funzione d’onda @(p) nella rappresentazione dell’impulso, lo stato

e~ ipyz/h |0) & semplicemente lo stato spostato in p,,

e_ip”z/h\z:ma/ap 1E(p) = ’(Z}(pmpyapz + p'y) . (39)

Questo corrisponde al nucleo che ha ricevuto I'impulso, (0,0, —p+), appunto, un effetto del

rinculo.

Oppure, se lo stato iniziale & descritto nella rappresentazione solita (delle coordinate) come

sovrapposizione delle onde piane

Yolr) = / & i(p) PN (40)

e P (x) = [ pi(p) et e pn, (41)

Quindi si vede che ogni componente dell’impulso si sposta di (0,0, —p-).



