
Meccanica Quantistica - a.a. 2012/2013

Prova scritta - 05.09.2013

MQI: risolvere il Problema 1 e il Problema 2, 1)-3);
MQII: risolvere, a scelta, o il Problema 1 e il Problema 2, o ilProblema 3;
Corso annuale MQ: risolvere, a scelta, o Problemi 1 e 2, oppure, Problemi 1 e 3.

Tempo disponibile: 3 ore

Problema 1

Una particella di massam si muove in una dimensione, sottoposta ad un potenziale delta
(barriera o buca secondo il segno dig),

V(y) = gδ(y) . (1)

Determinare le probabilità che la particella, incidente da y = −∞ con impulsop = kh̄,
attraversi la zona del - o venga riflessa dal - potenziale.

Problema 2

Il neutrone è una partiella con carica nulla, spin 1/2, massam e momento magneticoµn =
−1.913µ, doveµ è il magnetone nucleare,µ≡ |e|h̄/2mpc.

1) Si scriva l’equazione di Schrödinger per un neutrone in campo magneticoB.

2) Un fascio di neutroni con impulsop = kh̄ si muove lungo l’assey, i neutroni inci-
denti sono polarizzati completamente lungo l’assex. Nel moto il fascio passa attra-
verso una sottile zona in cui è presente un campo magnetico,che per semplicità è
schematizzato come un campo lungo l’assez, ortogonale al fascio, della forma

B = (0,0,B), B = bδ(y) .

Si risolva l’equazione di Schrödinger stazionaria e si calcoli la probabilitàP di “spin
flip, o più precisamente la probabilità di osservare neutroni ay> 0 con polarizzazione
−1 lungo l’assex. Si ricordi che la probabilità in questione è definita comeil flusso
di particelle che hanno passato la barriera con lo spinsx invertito diviso per il flusso
incidente.

Nei calcoli si ponga per brevità 1.913µb= h̄2

2mβ.
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Figura 1:

3) Si calcoli la probabilità che un neutrone venga riflesso,indipendentemente dallo stato
finale di spin.
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4) Per velocità abbastanza grandi possiamo considerare latraiettoria del neutrone come
rettilinea, con velocità,v = p/m. In questa approssimazione si formuli il problema
dello spin flip in termini di un’Hamiltoniana time-dipendente per la variabile di spin
soltanto, i.e., trattando il moto in direzione ˆy in maniera classica,

y(t) = vt, (2)

e si calcoli la probabilità di inversione di spin. Paragonare il risultato con quanto
ottenuto nel punto 2.

Problema 3

Nel caso di atomo di idrogeno le interazioni iperfini sono descritte dall’Hamiltoniana,

V = A

{

8π
3

I ·Sδ(3)(r)− [I ·S−3(I · r̂)(r̂ ·S)]
1
r3 +

I ·L
r3

}

,

dove

A = − eh̄
2mc

µpggp ≡ |µB|µpggp > 0; ℓ = h̄L ; s= h̄S ; sN = h̄I ;

g≃ 2.002,gp ≃ 5.586 sono i fattori giromagnetici dell’elettrone e del protone,µB eµp sono
il magnetone di Bohr e il magnetone nucleare,ℓ, s, sN sono il momento angolare orbitale,
lo spin dell’elettrone, e lo spin del nucleo (il protone), rispettivamente.

(i) Discutere l’origine fisica di tale interazione.

(ii) Determinare lo splitting dello stato fondamentale dell’atomo di idrogeno,∆E, in teoria
delle perturbazioni al primo ordine inV

(iii) Calcolare∆E in termini di α e in unità di 1 a.u.= e2

rB
.

(iv) Discutere l’ordine di grandezza di tale correzione, paragondolo con il generico ordine
di grandezza delle correzioni di tipo struttura-fine (spin-orbita).

Potete usare, se è necessario,

ψ100 = R1,0(r)Y0,0, R1,0(r) = 2a−3/2e−r/a,

a = rB (1+
me

mP
),

rB è il raggio di Bohr.

α =
e2

h̄c
= 7.29710−3,

me

mp
≃ 5.44610−4,
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Soluzioni

Problema 1

Ponendo
ψ = eiky +Re−iky, y < 0, ψ = T eiky, y > 0, (3)

e imponendo le condizione di raccordo,

1+R= T ;
h̄2

2m
ik(T − (1−R)) = gT (4)

si hanno

T =
1

1+ img
kh̄2

, R= −
img
kh̄2

1+ img
kh̄2

. (5)

Le probabilità di trasmissione e di riflessione sono:

PT =
1

1+ α2 , PR =
α2

1+ α2 , (6)

dove
α ≡ mg

kh̄2 . (7)

Problema 2

1)

− h̄2

2m
∇2ψ−µnσ ·B = Eψ (8)

2) L’interazione di spin è diagonale se quantizziamo lungo l’asseze in questa notazione si
ha, per spinori|↑〉, |↓〉, una Hamiltoniana di interazione

HI = ± h̄2

2m
βδ(y)

quindi la soluzione del problema di Schrödinger è l’usuale soluzione in presenza di
un potenziale aδ, trovata al Problema 1. Per lo spinore|↑〉 le condizioni di raccordo
sono

1+R= T ;
h̄2

2m
ik(T − (1−R)) =

h̄2

2m
βT

con soluzione

T =
1

1+ i β
2k

; R= − i β
2k

1+ i β
2k

(9)

Per la seconda polarizzazione basta cambiare il segno diβ, quindi

T↑,↓ =
1

1± i β
2k

; R± = ∓ i β
2k

1± i β
2k

(10)

Un fascio di neutroni polarizzato longitudinalmente lungox̂ è descritto dalla funzione
d’onda

eiky|+x〉 =
1√
2

(

1
1

)

eiky =
1√
2
(|↑〉+ |↓〉)eiky, (11)
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|±x〉 indicano gli spinori polarizzati lungox. Dopo la zona di campo la funzione
d’onda è

1√
2

(

T↑
T↓

)

eikx =

(

T↑ +T↓
2

|+x〉+ T↑−T↓
2

|−x〉
)

eikx (12)

Confrontando con il flusso incidente le ampiezze e le probabilità di spin-flip (A−,T−)
e non spin-flip (A+,T+) sono rispettivamente

A− =
T↑−T↓

2
= −i

β
2k

1+ β2

4k2

; T− = |A−|2 =
β2

4k2

(

1+
β2

4k2

)−2

(13a)

A+ =
T↑ +T↓

2
= −i

1

1+ β2

4k2

; T+ = |A+|2 =

(

1+
β2

4k2

)−2

(13b)

3) Con lo stesso ragionamento l’onda riflessa è

1√
2

(

R↑
R↓

)

eiky =

(

R↑ +R↓
2

|+x〉+ R↑−R↓
2

|−x〉
)

eiky (14)

e le corrispondenti probabilità sono

R− =

∣

∣

∣

∣

R↑−R↓
2

∣

∣

∣

∣

2

=
β2

4k2

(

1+
β2

4k2

)−2

(15a)

R+ =

∣

∣

∣

∣

R↑ +R↓
2

∣

∣

∣

∣

2

=

(

β2

4k2

)2(

1+
β2

4k2

)−2

(15b)

La probabilità di riflessione, indipendentemente dallo spin, è

R+ +R− =
β2

4k2

(

1+
β2

4k2

)−1

Notiamo che, come deve essere, si ha:

T+ + T−+R+ +R− = 1

4) Per velocità abbastanza grandi possiamo trascurare la riflessione ed assumere per la
particella la triettoria classica,x= vt. In questa approssimazione lo spin è sottoposto
ad una Hamiltoniana dipendente dal tempo

V(t) = −µnbδ(vt)σz ≡
h̄2

2m
βδ(vt)σz

Siccome prima e dopo la barriera non c’è campo magnetico, l’ampiezza di transizio-
ne si può scrivere

af =
−i
h̄

Z

h̄2

2m
βδ(vt)dt〈−x|σz|+x〉 = −i

h̄
2mv

β = −i
β
2k

quindi la probabilità di inversione è

P =
β2

4k2

che coincide con lo sviluppo a grandi velocità diT−.
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Problema 3

(i) Le interazioni sono causate dai momenti magnetici del nucleo e dell’elettrone, le intera-
zioni dipolo-dipolo, i.e., l’energia del momento magnetico dell’elettrone nel campo
magnetico del nucleo, o vice versa.

(ii) Le correzioni all’energiaE(1) sono date dagli autovalori diV nello stato fondamentale,
quattro volte degenere per gli spin dell’elettrone e del nucleo. Visto cheℓ = 0 l’ultimo
termine non contribuisce. Per q riguarda il secondo termine, visto che

I ·S−3(I · r̂)(r̂ ·S) = IiSj (δi j −3r̂ i r̂ j) , (16)

esso è un tensonre sferico di rango 2, non contribuisce neppure, per via del teorema
di Wigner-Eckart. Contribuisce solo il primo termine che èdiagonale nella base di
spin totale

F = I +S . (17)

F prende i valoriF = 1 (tripletto di spin) oF = 0 (singoletto). Poiché

I ·S=
1
2
(F2− I2−S2) =

{

1
4 F = 1,

− 3
4 F = 0

, (18)

la differenza dell’energia negli stati di tripletto e di singoletto è

∆E = A
8π
3
|ψ1,0,0(0)|2 =

[

2
3

ggp(1+
me

mp
)−3

]

me

mp
α2 e2

rB
. (19)

Numericamente il risultato è, in unità diRy= e2/2rB,

∆E =

[

4
3

ggp(1+
me

mp
)−3

]

me

mp
α2 e2

2rB
≃ 0.00811α2 e2

2rB
≃ 4.31710−7 e2

2rB
. (20)

La frequenza della transizione tra i due sottolivelli è

∆E/h∼ 1420MHz. (21)

(iv) Vediamo che il fattore dominante, rispetto alle correzionispin-orbita, tipicamente
dell’ordine di

∼ α2 e2

rB
(22)

è il rapporto
me

mp
∼ O(10−3). (23)

5


