
Prova Scritta di Meccanica Quantistica I

Facoltà di Scienze, M.F.N., Università degli Studi di Pisa
07 gennaio 2010 (A.A. 09/10)

Tempo a disposizione: 3 ore

Risolvere Problemi 1 e 2 per il recupero Compitino 1; risolvere Problemi 2 e 3 per il
recupero Compitino 2. Per la prova scritta completa risolvere Prob. 1, Prob. 3 e Prob. 2 (i).

INDICARE CHIARAMENTE la scelta fatta.
I punteggi indicati sono solo per i recupero compitini.

Problema 1
Una particella di massa m si muove descritta dall’Hamiltoniana,

H =
p2

2m
+ f δ(x)+V (x) , V (x) =

{
0 x < 0
−V0 x > 0,

V0 > 0.

(i) Dimostrare la condizione di raccordo soddisfatta dalla funzione d’onda a x = 0,

ψ(0+) = ψ(0−); ψ
′(0+)−ψ

′(0−) =
2m f
h̄2 ψ(0) . (1)

(2 punti)

(ii) La particella è incidente da x =−∞. Scrivere la soluzione dell’equazione di Schrödin-
ger per ψ(x), valida nelle due regioni, I : x < 0 e II : x > 0, che soddisfa le condizioni
al contorno asintotiche appropriate a x =±∞. (2 punti)

(iii) Imponendo la condizione (1) risolvere l’equazione di Schrödinger e trovare la funzio-
ne d’onda valida anche nella regione attorno a x = 0. (3 punti)

(iv) Determinare la probabilità che la particella incidente da x = −∞ passi la barriera (o
la buca) di potenziale, transitando nella regione x = +∞. Discutere i limiti f → ∞ e
f → 0. (1 punto)

Problema 2.
Tre particelle di spin 1

2 interagiscono tramite l’Hamiltoniana,

H = 2A [s1 · s2 + s2 · s3 + s3 · s1 ]+B(s1z + s2z + s3z) ,

dove A(6= 0), B(6= 0) sono costanti. Si trascuri il momento angolare orbitale.

(i) Riscrivere l’Hamiltoniana in termini dell’operatore dello spin totale,

S = s1 + s2 + s3 ≡ s1⊗1⊗1+1⊗ s2⊗1+1⊗1⊗ s3 .

Trovare lo spettro dell’energia (gli autovalori di H e relativa degenerazione). (2
punti)

(ii) Assumendo A < 0, B > 0, trovare la funzione d’onda dello stato fondamentale. (3
punti)
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(iii) All’istante t = 0 il sistema si trova nello stato

ψ =
1√
2
(|↑↑↑〉− |↓↓↓〉).

Qual’è la probabilità che una misura di s1x al tempo t dia il risultato s1x = 1
2 ? (2

punti)

Problema 3.
Un atomo di idrogeno “perturbato” è descritto dall’Hamiltoiana

H = H0 +H ′ H0 =
p2

2m
− e2

r
, H ′ = λs ·p,

dove s è l’operatore di spin dell’elettrone, λ è una piccola costante.

(i) Dire quali tra le seguenti osservabili

s2, L2, J2, si, Li, Ji, P (P = parita′)

sono conservate in presenza di H ′.1 J è il momento angolare totale, J = L + s. (3
punti)

(ii) Dimostrare che nello stato fondamentale dell’atomo di idrogeno ψ100 (autostato di H0)
vale2

〈100; χ
′ |H ′|100; χ〉= 0 ,

indipendentemente dallo stato di spin, χ,χ
′
= |↑〉, |↓〉. (2 punti)

(iii) Si considerino gli autostati di H0 con n = 2, |2, `,m; χ〉. Costruire, in termini di questi
stati, l’autostato di (J,Jz) con autovalori (J,Jz) = ( 3

2 , 1
2 ). (2 punti)

(iv) Dimostrare, utilizzando i risultati dei punti (i) e (iii), che vale la relazione

〈2,1,1;↓|H ′ |100;↑〉=−
√

2〈2,1,0;↑|H ′ |100;↑〉, (2)

senza fare il calcolo esplicito degli elementi di matrice. (1 punto)

1L’operatore di spin si comporta sotto parità nella stessa maniera dell’operatore di momento angolare orbitale.
2Qui e in seguito, indichiamo con |n, `,m; χ〉 autostati di H0, i.e., gli stati dell’atomo di idrogeno nell’n-sima

orbita di Bohr, con spin.
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Formulario

Densità di corrente (sistema unidimensionale)

J =
ih̄
2m

[ψ∗′(x)ψ(x)−ψ(x)∗ψ′(x) ] .

Atomo di idrogeno
ψn,`,m(x)χ = Rn,`(r)Y`,m(θ,φ)χ, χ = |↑〉 o |↓〉 .

Momento angolare e regola di commutazione
[Li,L j] = iεi jkLk; [Li, p j] = iεi jk pk; [si,s j] = iεi jksk.

Coefficienti di Clebsch-Gordan (e.g. −2/3 va letto come −
√

2/3)

m1

m3

. . .

m2

m4

. . .
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. . .

. . .
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Soluzione
Problema 1.

(i) La prima segue dalla richiesta che la densità di probabilità ψ∗ψ sia continua. Per
trovare la seconda, basta integrare i due membri dell’equazione di Schrödinger

− h̄2

2m
ψ
′′(x)+ f δ(x)ψ(x)+V (x)ψ(x) = E ψ(x)

nell’intervallo [−ε,ε] per trovare

− h̄2

2m
[ψ′(ε)−ψ

′(−ε) ]+ f ψ(0) = O(ε) .

Prendendo poi il limite ε→ 0 si ha la (1). È da notare che la presenza del termine
∝ V (x) non modifica la condizione poiché la discontinutà nel V (x) è finita.

Notiamo inoltre che la densità di corrente è continua attraverso x = 0, poiché

j+− j− =
ih̄
2m

[ (ψ∗′ψ|+−ψ
∗′

ψ|−−{ψ∗ψ′|+−ψ
∗
ψ
′|−} ]

=
i f
h̄

[ |ψ(0)|2−|ψ(0)|2 ] = 0 (3)

(ii)
ψI(x) = eikx +Ae−ikx, ψII(x) = Beik′x,

dove

k =
√

2mE
h̄

, k′ =

√
2m(E +V0)

h̄
,

(iii)
1+A = B;

ik′B− ik(1−A) =
2m f
h̄2 B, 1−A =

i
k
(

2m f
h̄2 − ik′)B = (

k′

k
+

2m f i
kh̄2 )B

B =
2

1+ k′
k + 2m f i

kh̄2

; A = B−1 =
1− k′

k −
2m f i
kh̄2

1+ k′
k + 2m f i

kh̄2

=
k− k′− 2m f i

h̄2

k + k′+ 2m f i
h̄2

;

(iv)

D =
JII

JI
= |B|2 k′

k
=

4kk′

(k + k′)2 + 4m2 f 2

h̄4

; R = |A|2 =
(k− k′)2 + 4m2 f 2

h̄4

(k + k′)2 + 4m2 f 2

h̄4

;

Si verifica che
D+R = 1.

La probabilità richiesta è dunque:

Ptrasm = D =
4kk′

(k + k′)2 + 4m2 f 2

h̄4

.

Nel limite f → ∞

Ptrasm ∼
1
f 2 → 0,

mentre per f → 0 si ha

Ptrasm =
4kk′

(k + k′)2 ,

il risultato noto per un gradino di potenziale.
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Problema 2.

(i)
H = A [S2− s2

1− s2
2− s2

3]+BSz = A [S2− 9
4
]+BSz .

Gli autosati dell’energia sono dunque gli autostati di S,Sz. I possibili valori di S si
possono ottenere dalla regola di composizione-decomposizione

1
2
⊗ 1

2
⊗ 1

2
= (1⊕0)⊗ 1

2
=

3
2
⊕ 1

2
⊕ 1

2
.

Chiaramente i livelli corrispondenti a S = 1
2 sono tutti doppiamente degeneri,

dovuto al fatto che ci sono due modi di costruire gli stati di S = 1
2 partendo da tre

spin 1
2 . Gli autovalori dell’energia sono

E3/2,Sz =
3
2

A +BSz, Sz =
3
2
,

1
2
,−1

2
,−3

2
;

E1/2,Sz =−3
2

A +BSz, Sz =
1
2
,−1

2
;

Non ci sono ulteriori degenerazioni dei livelli per generici valori di A,B.

(ii) Per A < 0 lo stato fondamentale è lo stato (S,Sz) = ( 3
2 ,− 3

2 ), con l’energia

E3/2,−3/2 =
3
2

(A−B);

lo stato è
ψ0 = |↓↓↓〉

(iii)
ψ(0) =

1√
2
(|↑↑↑〉− |↓↓↓〉).

Trascurando un fattore di fase davanti, si ha

ψ(t) =
1√
2
(e−3iBt/2h̄|↑↑↑〉− e3iBt/2h̄|↓↓↓〉).

La matrice densità ridotta per l’osservatore di s1 è quindi

ρ =
1
2

(
1 0
0 1

)
.

La media della variabile

sx =
1
2

(
0 1
1 0

)
è dunque

Trsx ρ = 0.

Il che significa che

1
2

Psx=1/2−
1
2

Psx=−1/2 =
1
2
(Psx=1/2−Psx=−1/2) = 0,

i.e.,
Psx=1/2−Psx=−1/2 = 0
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D’altra parte, la conservazione della probabilità totale dà

Psx=1/2 +Psx=−1/2 = 1,

perciò si ha

Psx=1/2 =
1
2

indipendentementa dal tempo t.

Problema 3.

(i) Commutano con l’Hamiltoniana gli operatori

s2, J2, Ji .

(ii) L’operatore H ′ ha la parità negativa (P H ′P−1 =−H ′), mentre lo stato fondamentale
ψ100 ha la parità definita (positiva), perciò

〈100; χ
′ |H ′|100; χ〉= 〈100; χ

′ |P−1P H ′P−1P |100; χ〉=−〈100; χ
′ |H ′|100; χ〉= 0 .

(iii) Per costruire uno stato di J = 3
2 il momento angolare orbitale deve essere ` = 1.

Utilizzando le tabelle dei coefficienti di CG, si ha

|3
2

1
2
〉= 1√

3
|2,1,1;↓〉+

√
2
3
|2,1,0;↑〉 .

(iv) Lo stato |100;↑〉 è ovviamente autostato di J2 con J = 1
2 . Dal punto (i) segue che

anche
H ′|100;↑〉

è un autostato di J2 con J = 1
2 ,

J2 H ′|100;↑〉= H ′J2|100;↑〉= 3
4

H ′|100;↑〉 .

D’altra parte

〈3
2

1
2
|J2 =

15
4
〈3

2
1
2
| .

Perciò

〈3
2

1
2
|J2 H ′|100;↑〉= 3

4
〈3

2
1
2
|H ′|100;↑〉= 15

4
〈3

2
1
2
|H ′|100;↑〉 ;

segue che

(
15
4
− 3

4
)〈3

2
1
2
|H ′|100;↑〉= 0, ... 〈3

2
1
2
|H ′|100;↑〉= 0 .

Utilizzando il risultato del punto (iii) si vede che questa relazione è proprio la (2)
che si voleva demostrare.
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