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MQI: risolvere i Problemi 1 e 2
MQII o il corso annulae di MQ: risolvere il Problema 3.

Tempo a disposizione: 3 ore

Problema 1

Una particella di massa m è sottoposta ad un’energia potenziale U(x) = 1
2 κx2 (oscillatore armonico).

Indichiamo con |k〉, dove k = 0,1,2 . . ., gli autostati normalizzati dell’Hamiltoniana. Il sistema all’istante
iniziale t = 0 si trova nello stato

|ψ〉=C
(
|0〉+ |1〉

)
1) Determinare C in modo che lo stato |ψ〉 sia normalizzato.

2) Scrivere il valor medio dell’energia all’istante iniziale.

3) Il sistema evolve. Consideriamo un tempo t > 0.

a) Scrivere lo stato |ψ(t)〉 ottenuto dall’evoluzione dello stato precedente.

b) Scrivere il valor medio dell’energia al tempo t.

c) Scrivere il valor medio della coordinata x al tempo t.

Problema 2

Una particella di massa m in una dimensione si muove verso destra. Incontra un ostacolo schematizzato
come un potenziale

V (x) = gδ(x) ; g > 0 . (1)

(i) Calcolare qual è la probabilità che la particella passi l’ostacolo (D) e qual è la probabilità di riflessione (R).
Si schematizzi la particella incidente sull’ostacolo come un’onda piana di impulso definito, ψinc∼Aeikx

(p = kh̄).

(ii) Discutere come cambia il risultato per D e R, nel caso di potenziale attrattivo, i.e., g < 0 nella (1).

(iii) Supponiamo che l’onda riflessa e l’onda trasmessa abbiano forme, ψri f ∼ Be−ikx, ψtras ∼C eikx, rispet-
tivamente. I rapporti B/A e C/A, considerati come funzione di una variabile complessa k, hanno un
polo per un valore particolare immaginario di k. Potrebbe avere un significato fisico un tale risultato?
Se sı̀, qual’è?
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Problema 3

L’interazione spin-orbita in un atomo idrogenoide è data dall’Hamiltoniana

H
′
=

Ze2h̄2

2m2c2r3 s · `. (2)

Per lo scopo di questo esercizio, si trascurino altri termini di correzioni (il termine di Darwin e il termine
proporzionale a p4) e considerare soltanto H

′
come perturbazione.

(i) Senza tenere conto delle interazioni spin-orbita (H
′
= 0) qual’è il grado di degenerazione dell’n-simo

livello di Bohr, tenendo conto anche di spin dell’elettrone.

(ii) Facendo uso della teoria delle perturbazioni al primo ordine in H ′, dire in quanti sottolivelli si dividono
i livelli n = 2 e n = 3. Specificare il termine spettrale e relativo grado di degenerazione per ciascun
sottolivello;

(iii) Determinare l’energia del sottolivello più basso di n = 3, e quella del sottolivello più alto con n = 2,
esprimendole in funzione di combinazioni adimensionali Z e α(= e2

h̄c ), e in unità di e2

rB
;

(iv) Determinare il numero delle righe di transizione n = 3→ n = 2, in approssimazione di dipolo, tenendo
conto delle interazioni (2);

(v) Determinare qual’è la transizione (di dipolo) corrispondente alla luce con la lunghezza d’onda più lunga,
tra le righe al punto (iv).

(vi) In quante righe si divide la riga del punto precedente, quando il sistema viene sottoposto ad un campo
magnetico molto debole B = (0,0,B) esterno omogeneo e costante? Quante righe si vedono, in par-
ticolare, se la luce è osservata dalla direzione ẑ = (0,0,1) rispetto all’atomo che si trova all’origine,
r = (0,0,0)?

Formulario (` 6= 0) ∫
∞

0
dr

1
r

RZ
n`(r)

2 =
Z3

r3
B n3 `(`+ 1

2 )(`+1)
.
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Soluzione

Problema 1

(1)
C =

1√
2

(2)

〈E〉= 1
2
(

ωh̄
2

+
3ωh̄

2
) = ωh̄. (3)

(3) •
|ψ(t)〉=Ce−iωt/2

(
|0〉+ e−iωt |1〉

)
•

〈E〉= 1
2
(

ωh̄
2

+
3ωh̄

2
) = ωh̄. (4)

•

〈x〉= 1
2
(eiωt〈1|x|0〉+ e−iωt〈0|x|1〉= 1

2

√
h̄

2mω
(eiωt + e−iωt) =

√
h̄

2mω
cosωt (5)

Problema 2

(i)

D =
1

1+α2 , R =
α2

1+α2 , α =−mg
kh̄2 .

(ii) Gli stessi di (i).

(iii) Il calcolo dà
C
A
=

1
1− iα

;
B
A
=

iα
1− iα

; (6)

dove
α =−mg

kh̄2 , g > 0. (7)

Evidentemente i rapporti C
A e B

A divergono a α =−i, cioè

k =−i
mg
h̄2 , p =−i

mg
h̄
, ... E =−mg2

2h̄2 . (8)

Ma questa è esattamente il valore dell’energia dello stato legato. Bisogna fare attenzione tuttavia nel
concludere che questo rappresenti la presenza del noto stato legato nel sistema. La funzione d’onda in
questo caso (ignorando il pezzo dell’onda incidente, che è trascurabile) è data da

ψ(x)∼ e−ikx = e−κx, x < 0; ψ(x)∼ eikx = eκx, x > 0. (9)

Nel caso di potenziale ripulsivo, g > 0, quindi κ≡ mg
h̄2 > 0, questo non corrisponde ad uno stato legato:

la funzione d’onda non ha la forma ammissibile (i.e., non rappresenta uno stato fisico).
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Vice versa, nel caso di potenziale attrattivo, g < 0, κ < 0, la (9) è esattamente l’andamento della
funzione d’onda normalizzabile di uno stato legato. Cosı̀ abbiamo riprodotto il noto risultato per lo
stato fondamentale discreto nel potenziale delta attrattivo, dal calcolo del processo di diffusione!

Tale risultato è perfettamente comprensibile, visto che la soluzione dell’equazione di Schödinger è
puramente algebrica e non dipende dalla realtà o dalla fase del parametro k. Quest’ultimo aspetto è
però cruciale nell’interpretazione della soluzione (9).

Problema 3

(i)
2n2

(ii) n = 2→ `= 0,1, mentre n = 3→ `= 0,1,2. Tenendo conto di H
′

il livello `= 1 si divide in j = 3
2 ,

1
2 ,

mentre il livello `= 2 si divide in j = 5
2 ,

3
2 . Chiaramente il livello n = 2 si divide in tre sottolivelli,

2S1/2,
2P1/2,

2P3/2, (10)

mentre il livello n = 3 in cinque sottolivelli

2S1/2,
2P1/2,

2P3/2,
2D3/2,

2D5/2. (11)

(iii) Determinare l’energia del sottolivello più basso di n = 3, e quella del sottolivello più alto tra n = 2,
esprimendole in funzione di combinazioni adimensionali Z e α(= e2

h̄c ), e in unità di e2

rB
;

s · `= 1
2
[ j( j+1)− s(s+1)− `(`+1) ] = 0,−1,

1
2
,−3

2
,1,

rispettivamente per i cinque sottolivelli n = 3 e

s · `= 1
2
[ j( j+1)− s(s+1)− `(`+1) ] = 0,−1,

1
2
,

per i sottolivelli n = 2.

n = 3. Visto che (per Ze2h̄2

2m2c2 )

∆En=3
D3/2

=−3
2

Z3

r3
B33 2(2+ 1

2 )(2+1)
=− 1

270
Z3

r3
B

> ∆En=3
P1/2

=− Z3

r3
B33 (1+ 1

2 )(1+1)
=− 1

81
Z3

r3
B
.

(per Ze2h̄2

2m2c2 ) Il sottolivello più basso n = 3 è 2P1/2, con l’energia

− 1
18

Z2e2

rB
− Ze2h̄2

2m2c2
1

81
Z3

r3
B
=−( 1

18
+

Z2α2

162
)

Z2e2

rB

Vice versa, il sottolivello più alto n = 2 è 2P3/2, con

∆En=2
P1/2

=−1
8
+

1
2

Z3

r3
B23 (1+ 1

2 )(1+1)
=−1

8
+

1
48

Z3

r3
B

Ze2h̄2

2m2c2 =−(1
8
− Z2α2

96
)

Z2e2

rB
.
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(iv) Tenendo condo delle regole di selezione, si hanno sette transizioni possibili (sette righe):

2D3/2→ 2P3/2,
2D3/2→ 2P1/2,

2D5/2→ 2P3/2,

2P3/2→ 2S1/2,
2P1/2→ 2S1/2,

2S1/2→ 2P3/2,
2S1/2→ 2P1/2,

(v) Determinare la transizione la più lunga tra le righe al punto (iii).

Il livello più basso di n = 3 è 2P1/2, ma la transizione al sottolivello più alto n = 2 (2P3/2) è proibito
dalla regola di selezione. La competizione è tra

D3/2→ P3/2 e P1/2→ S1/2. (12)

I calcoli delle energie fatti al punto (iii) indicano che la più lunga (l’energia minore) è il primo, Dn=3
3/2 →

Pn=2
3/2 .

(Fig. 1)

(vi) In quante righe si divide la riga con la lunghezza d’onda più lunga, del precedente punto, quando
il sistema viene sottoposta ad un campo magnetico molto debole B = (0,0,B) esterno omogeneo e
costante?

Dal risultato del precedente punto, la transizione in questione è

Dn=3
3/2 −→ Pn=2

3/2 .

Ciascuno dei due livelli si dividono in 4 sottolivelli Zeeman. Escludendo le transizioni con |∆ jz| > 1,
si trovano 10 righe.

Nel caso la luce è osservato nella direzione dell’asse z, le transizioni di dipolo ammesse sono quelle
con ∆ jz =±1. Escludendo le transizioni con ∆ jz = 0, ci si aspetta di osservare perciò

10−4 = 6

righe.

(Fig. 2)
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L=1, j=3/2

L=2, j=5/2

L=0, j=1/2

L=2, j=3/2

L=1, j=1/2

L=1, j=3/2

L=0, j=5/2

L=1, j=1/2

n=3

n=2

Figura 1: Transizioni di dipolo n=3 to n=2
6



L=2

Jz =3/2

Jz =1/2

Jz = -1/2

Jz = - 3/2

Jz =3/2

Jz = 1/2

Jz = - 1/2

Jz = - 3/2

L=1

Figura 2: Transizioni di dipolo con Zeeman splittings
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