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Si consideri l’atomo di idrogeno in un campo elettrico statico esterno debole, E =
(0, 0, E). Per un atomo neutro (come l’atomo di idrogeno) il primo effetto di E con l’atomo
è l’interazione di dipolo,

∆H = e r ·E = e z E , (1)

r è l’operatore di posizione dell’elettrone.

(i) Si dimostri, facendo uso dell’argomento di parità, che nello stato fondamentale, e infatti
in uno stato stazionario non-degenere qualsiasi |ψ〉, vale

∆E = 〈ψ|∆H|ψ〉 = 0.

Dovuto alla degenerazione accidentale dei livelli n ≥ 2 di Bohr, l’atomo di idrogeno
eccitato può possedere un dipolo elettrico. Considerando i quattro stati di n = 2,

|n, `,m〉 = |2, 1,±1〉, |2, 1, 0〉, |2, 0, 0〉, (2)

si vuole studiare l’effetto del campo e trovare le correzioni ai livelli di Bohr. In pratica,
visto che l’Hamiltoniana senza il campo elettrico

H0 =
p2

2m
− e2

r
,

ha la forma (− e2

8 rB
)1 come matrice, nel sottospazio 4×4 dell’Eq. (2), si propone di scrivere

elementi di matrice dell’operatore ∆H dell’Eq. (1) in questo sottospazio e diagonalizzarlo.
Tale diagonalizzazione di ∆H non cambierà la parte di H0.

(ii) Dimostrare che, come conseguenza del fatto che [Lz,∆H] = 0, ∆H ha elementi di
matrice non nulli soltanto tra due stati con lo stesso numero quantico azimutale m.

(iii) Dire tra quali stati, tra quelli della (2), ∆H ha un elemento di matrice non nullo.

(iv) Calcolare gli elementi di matrice non nulli di ∆H (punto (iii) ) nello sottospazio Eq. (2),
e diagonalizzarlo. In quanti sottolivelli si divide il livello n = 2 e con quali correzioni
di energia, rispetto al livello di Bohr?
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(v) Spiegare qualitativamente perché il risultato sopra non è esatto. Arguire che il calcolo
fatto è tuttavia approssimativamente valido per un campo esterno sufficientemente
debole.

Suggerimento: Per il secondo punto qui, osservare che il problema di mixing tra
due stati ψ1 e ψ2 (calcolo di elementi non diagonali e successiva diagonalizzazione
dell’Hamitoniana) è qualitativamente diverso, a seconda della relazione tra E1, E2 e
E : i.e., se |E1−E2| � cost. |E| o |E1−E2| � cost. |E|, dove E1, E2 sono autovalori di
H0 corrispondenti a ψ1 e ψ2.

Se occorre, usate anche∫ ∞

0
dr r3R2

2,1 = 5 rB,
∫ ∞

0
dr r3R2

2,0 = 6 rB,
∫ ∞

0
dr r3R2,1R2,0 = −3

√
3 rB.

dove rB è il raggio di Bohr.
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Soluzione

(i) L’Hamiltoniana è invariante per parità,

PH P−1 = H .

Di conseguenza uno stato stazionario non degenere è un autostato di parità:

P |ψ〉 = η |ψ〉, η = ±1 .

Segue che nel caso di un operatore di dipolo, che è dispari,

P e rP−1 = −e r,

l’elemento di matrice in uno stato stazionario qualsiasi è

〈ψ| e r |ψ〉 = 〈ψ|P−1P e rP−1P |ψ〉 = −|η|2 〈ψ| e r |ψ〉 = −〈ψ| e r |ψ〉 = 0 .

(ii)

0 = 〈m|[Lz,∆H]|m′〉 = (m−m′)〈m|∆H|m′〉.

Segue che vale 〈m|∆H|m′〉 = 0, per m 6= m′.

Non è corretto usare l’argomento, “visto che Lz e ∆H commutano si possono
costruire gli autostati sia di Lz che di ∆H ....” In particolare, gli stati |n`m〉 non
sono autostati di ∆H.

(iii) Tra |2, 1, 0〉 e |2, 0, 0〉.

(iv)

〈210|∆H|200〉 = e E
∫
d cos θ dφY ∗1,0 cos θ Y0,0

∫∞
0 dr r3R2,1R2,0

= e E
√

3
4π 2π

∫
d cos θ cos2 θ (−3

√
3 rB) = e E

√
3

2
2
3 (−3

√
3 rB) = −3 e E rB (3)

Analogamente
〈200|∆H|210〉 = −3 e E rB.

Diagonalizzando si ha
δE = ±3 e E rB.

Il livello n = 2 si divide in tre livelli, δE = 0 (stati m = ±1 che restano degeneri); e
δE = ±3 e E rB, corrispondenti a stati,

|1〉 =
1√
2
( |2, 1, 0〉 ∓ |2, 0, 0〉 ),

rispettivamente.
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(v) Il calcolo sarebbe esatto se avessimo considerato H0 + ∆H come matrice infinito
dimensionale, tenendo conto di tutti gli autostati di H0 e se l’avessimo
diagonalizzato. Poiché abbiamo trascurato tutti gli stati non degeneri con il livello
n = 2, si tratta di un calcolo approssimativo.

Per rispondere al secondo punto, consideriamo un elemento non diagonale tra due
stati (autostati di H0), ψ1,2 con energia E1,2. La matrice 2× 2 nel sottospazio ψ1,2

sarà della forma (
E1 c E
c∗ E E2

)
;

la diagonalizzazione dà

E1,2 =
1
2
[E1 + E2 ±

√
(E1 − E2)2 + 4|c|2E2 ].

Nel caso in cui |E1 − E2| � c |E| questo si approssima con

E1 ± |c| E :

l’effetto è del primo ordine in E , e questo accade in particolare nel caso di
sottospazio degenere, che abbiamo considerato.

Nel caso invece di stati non degeneri, |E1 − E2| � c |E| la diagonalizzazione dà
(prendendo E1 > E2)

E1 +
|c|2 E2

E1 − E2
; E2 −

|c|2 E2

E1 − E2
;

l’effetto è quadratico in E : è un effetto molto più piccolo.

Naturalmente se teniamo conto di tutti gli stati di H0, uno stato, per es. |2, 1, 1〉, si
mischia non solo con |3, 2, 1〉, ma con |n, 2, 1〉, n = 4, 5, · · · , e anche con gli stati di
continuo: il problema di diagonalizzazione coinvolge più stati e di conseguenza gli
autovalori corretti conterrà i termini di potenze più elevate in E : queste si possono
tenere conto in teorie delle perturbazioni ordine per ordine, ma qui ci limitiamo ad
un’osservazione molto qualitativa. Per E sufficientemente piccolo dunque è legittimo
tenere conto solo gli stati degeneri e diagonalizzare H0 + ∆H in questi sottospazi.
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