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Problema 1 - MQ annuale (o per MQII)

Si considerino le due Hamiltoniane per una particella di spin 1/2 in campo
magnetico:

H0 = −µBσ3 ; H1 = H0 − µB1σ1 (1)

a) Si scrivano gli autostati diH1 al primi ordine perturbativo inB1 tramite gli
autostati di H0. Nella soluzione si usino le notazioni ~ω = µB, ~ω1 = µB1.

I due sistemi sono connessi tramite una variazione nel tempo del campo mag-
netico

Bx(t) = B1 f(t) (2)
dove

f(−∞) = 0 ; f(+∞) = 1 si usi: f(t) =
{

1
2 e

t/τ per t < 0
1− 1

2e
−t/τ per t > 0

(3)

Si consideri il sistema nello stato fondamentale per t → −∞. Si vuole
calcolare qual è la probabilità Pi→f che il sistema passi nello stato eccitato per
t→ +∞ al primo ordine perturbativo non nullo.

b) Preliminarmente si calcoli cosa ci si aspetta di trovare per Pi→f nel limiti
τ → 0 e τ →∞.

Per approfondire il problema si proceda nel modo seguente:

c1) Ad un generico tempo t lo spinore che descrive l’evoluzione dello stato è
della forma

ψ(t) =
(
a(t)
b(t)

)
(4)

Si dimostri che per rispondere alla domanda basta calcolare la funzione
b(t) al primo ordine, si scriva in termini di a(t), b(t) l’ampiezza Ai→f (t) al
primo ordine perturbativo.

c2) Si risolva iterativamente l’equazione di Schrödinger per ψ calcolando b(t)
al primo ordine.

c3) Si scriva l’ampiezza di transizione e la probabilità di transizione

c4) In teoria perturbativa si è dimostrato nel corso che la probabilità cercata
si può scrivere nella forma

Pi→f =
1

~2ω2
fi

∣∣∣∣∫ ∞
−∞

∂Vfi
∂t

eiωfit
∣∣∣∣2 (5)

Dimostrare che si riottiene in effetti il risultato precedente e si verifichino
i limiti dati nella risposta alla domanda b).
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Problema 1- MQ1

In una prima rozza approssimazione una molecola di benzene si può immaginare
come un esagono regolare con un lato di L = 1.4 Å. Un elettrone può muoversi
sui lati di questo esagono, effettivamente un anello di circonferenza 6L, come
una particella libera. Si dia una stima della separazione dei primi due livelli
energetici specificandone le rispettive degenerazioni. Per l’espressione in eV si
usi

~2

2m`2
4π2 ' 150.8 eV ; per ` = 1 Å

Problema 2- MQ1

Una particella di spin S ha, in generale, un momento magnetico proporzionale
all’operatore di spin. Per una particella di spin 1/2 porremo:

µ = µσ (6)

Il momento magnetico si accopia con un campo magnetico con la nota Hamil-
toniana

H = −µ ·B (7)

Consideriamo un campo magnetico costante lungo l’asse z.

a) Esiste qualche componente del momento angolare che si conserva?

b) Scrivere autovalori ed autostati del sistema descritto dall’Hamiltoniana
(7).

c) Al tempo t = 0 il sistema ha spin polarizzato completamente nella di-
rezione che fa un angolo θ con l’asse z, diciamo nel piano x–z, quindi
lungo il versore n = (sin θ, 0, cos θ). Scrivere lo stato (spinore) |ψ〉 al
tempo t = 0 e verificare che è un autostato di n · σ con autovalore +1.

d) Calcolare la sua evoluzione temporale |ψ(t)〉.

e) Calcolare i valori medi delle tre componenti del momento magnetico al
passare del tempo: come descrivereste classicamente il risultato?
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Soluzioni

Problema 1

a) Al primo ordine perturbativo

|k′〉 = |k〉+
∑
s6=k

|s〉 〈s|V |k〉
Ek − Es

quindi per il fondamentale e lo stato eccitato

|1′〉 '
(

1
ω1
2ω

)
; |2′〉 =

(
−ω1

2ω
1

)
(8)

b) Per τ → ∞ la perturbazione è adiabatica e lo stato non cambia, cioè la
probabilità di transizione è nulla. Per τ → 0 la perturbazione è “istantanea”
quindi ci si aspetta

Pi→f = |〈2′|1〉|2 =
ω2

1

4ω2
(9)

c) Perturbativamente l’ampiezza di probabilità è

A = 〈2′|U(t)|1〉 = (−ω1

2ω
, 1).(a, b) =

(
−ω1

2ω
a(t) + b(t)

)
e quindi la probabilità

Pi→f = lim
t→∞

|Ai→f (t)|2 (10)

Siccome ω1 è già al primo ordine nella perturbazione basta calcolare b(t) al
primo ordine, tenendo a(t) all’ordine 0.

Si può risolvere in rappresentazione di interazione, oppure scrivere diretta-
mente

i~
db

dt
= µB b(t)− µB1 f(t)a(t) ⇒ ḃ = −iωb+ iω1f(t)a(t)

All’ordine zero a(t) = exp(iωt). Scrivendo b(t) = exp(−iωt)C(t) si ha per C
l’equazione

Ċ = iω1e
iωtf(t)a(t) ' iω1e

2iωtf(t)

Quindi

C(t) = iω1

∫ t

−∞
f(t′)e2iωt′ dt′

Inserendo l’espressione di f(t)

C(t) = iω1

[
1
2

1
2iω + 1

τ

+
e2iωt − 1

2iω
− 1

2
e−t/τ − 1
2iω − 1

τ

]
≡ ω1

2ω
e2iωt + C0(t)

Per t→∞,

C0(t) = iω1

[
1
2

1
2iω + 1

τ

− 1
2iω

+
1
2

1
2iω − 1

τ

]
= iω1

[
2iω

− 1
τ2 − 4ω2

+
i

2ω

]
=
ω1

2ω
1/τ2

4ω2 + 1
τ2
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Quindi

b(t) =
ω1

2ω
e+iωt + e−iωt

ω1

2ω
1/τ2

4ω2 + 1
τ2

(11)

All’ordine leading
a(t) = eiωt

quindi per l’ampiezza di probabilità

Ai→f = −ω1

2ω
a(t) + b(t) = e−iωt

ω1

2ω
1/τ2

4ω2 + 1
τ2

(12)

e quindi per la probabilità (10)

Pi→f =
ω2

1

4ω2

∣∣∣∣ 1
4ω2τ2 + 1

∣∣∣∣2 (13)

Correttamente la probabilità riproduce i limiti elencati nella risposta b).
Per la trattazione perturbativa standard notiamo che f(t) è continua ed

effettuando la derivata
∂V

∂t
= −~ω1

1
2τ
e−|t|/τ (14)

Siccome ωfi = 2ω, la (5) si scrive

Pi→f =
ω2

1

4ω2

∣∣∣∣∫ ∞
−∞

1
2τ
e−|t|/τe2iωtdt

∣∣∣∣2 =
ω2

1

4ω2

∣∣∣∣ 1
2τ

(
1

2iω + 1
τ

− 1
2iω − 1

τ

)∣∣∣∣2
=

ω2
1

4ω2

∣∣∣∣ 1/τ2

4ω2 + 1/τ2

∣∣∣∣2
che coincide con la (13).

Problema 1 - MQ1

L’esagono ha una lunghezza totale Le = 6L, e su questo percorso unidimension-
ale l’elettrone può muoversi come una particella libera, soggetta alla condizione
di periodicità. Le autofunzioni sono della forma

ψ(x) = A exp(ikx)

x indica la coordinata lungo l’esagono.
La condizione di periodicità è

ψ(x+ Le) = ψ(x) ;⇒ knLe = 2nπ ⇒ kn =
2nπ
Le

; n ∈ Z

I livelli energetici sono

En =
~2

2m
4π2

L2
e

n2
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il livello n = 0 è non degenere, gli altri sono due volte degeneri. Per il problema
considerato,

Le = 6 · 1.4 = 8.4 Å

per cui

∆E =
150.8 eV

8.42
(22 − 1) ' 6.4 eV.

Problema 2 - MQ1

1 Se il campo è diretto lungo l’asse z l’Hamiltoniana è

H = −µBσz (15)

che commuta con le rotazioni attorno all’asse z, quindi sz si conserva (è pro-
porzionale all’Hamiltoniana).

2 Gli autovalori sono (spin in sù in giù):

E+ = −µB E− = µB (16)

I relativi autostati

w+ =
(

1
0

)
; w− =

(
0
1

)
. (17)

3 Una rotazione antioraria di θ attorno all’asse y porta il versore dell’asse z
sul versore n, quindi lo stato descritto nel testo è

ψ = e−i
θ
2σy =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)(
1
0

)
=
(

cos θ2
sin θ

2

)
(18)

Verifichiamo che lo stato è un autovalore di σ · n con autovalore +1

σ · n = sin θσx + cos θσz =
(

cos θ sin θ
sin θ − cos θ

)
quindi

σ · nψ =

(
cos θ cos θ2 + sin θ sin θ

2

sin θ cos θ2 − cos θ sin θ
2

)
=
(

cos θ2
sin θ

2

)
c.v.d.

4 Si ha
ψ = cos

θ

2
w+ + sin

θ

2
w−

quindi l’evoluzione temporale è

ψ(t) = cos
θ

2
eiµB/~t w+ + sin

θ

2
e−iµBt/~ w− =

(
cos θ2 e

iµB/~t

sin θ
2 e
−iµB/~t

)
(19)
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5 Si ha
〈ψ|σz|ψ〉 = cos2 θ

2
− sin2 θ

2
= cos θ (20)

costante nel tempo, come aspettato.
Per le altre componenti, posto Ω = µB/~:

〈ψ|σx|ψ〉 = (cos
θ

2
e−iΩt, sin

θ

2
eiΩt)

(
sin θ

2 e
−iΩt

cos θ2 e
iΩt

)
= sin θ cos(2Ωt)

〈ψ|σy|ψ〉 = (cos
θ

2
e−iΩt, sin

θ

2
eiΩt)

(
−i sin θ

2 e
−iΩt

i cos θ2 e
iΩt

)
= − sin θ sin(2Ωt)

Come si vede si ha un moto di precessione orario. Questo è in accordo con la
descrizione classica del moto per un momento magnetico. Classicamente si ha
un momento delle forse µ ∧B e quindi (~S è il momento angolare)

~
dS
dt

= µ ∧B (21)

con la nostra definizione
µ = µσ =

2µ
~

~ s

e quindi la (21) diventa
dµ

dt
=

2µ
~

µ ∧B

che è descrive appunto una precessione oraria con velocità angolare 2µB/~ = 2 Ω
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