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Tempo a disposizione: 3 ore

Problema 1 - MQ annuale (o per MQII)

Si considerino le due Hamiltoniane per una particella di spin 1/2 in campo
magnetico:
Hy = —puBog; Hy = Hy — uByoy (1)

a) Siscrivano gli autostati di Hy al primi ordine perturbativo in B; tramite gli
autostati di Hy. Nella soluzione si usino le notazioni hw = puB, hw; = puB;.

I due sistemi sono connessi tramite una variazione nel tempo del campo mag-
netico

By (t) = By f(t) (2)
dove

f(=00) =0; f(+o0)=1 si usi: f(t)z{ el per t<O0

2
1—21e ¥/ per t>0 (3)

Si consideri il sistema nello stato fondamentale per ¢ — —oo. Si vuole
calcolare qual e la probabilita P;_, ¢ che il sistema passi nello stato eccitato per
t — +oco al primo ordine perturbativo non nullo.

b) Preliminarmente si calcoli cosa ci si aspetta di trovare per P, nel limiti
T—0eT— 00.

Per approfondire il problema si proceda nel modo seguente:

c1) Ad un generico tempo t lo spinore che descrive l'evoluzione dello stato &

della forma
w0 = (501) ()

Si dimostri che per rispondere alla domanda basta calcolare la funzione
b(t) al primo ordine, si scriva in termini di a(t), b(t) 'ampiezza A;_, ;(t) al
primo ordine perturbativo.

¢2) Si risolva iterativamente I’equazione di Schrédinger per ¢ calcolando b(¢)
al primo ordine.

¢3) Si scriva Pampiezza di transizione e la probabilita di transizione

c4) In teoria perturbativa si & dimostrato nel corso che la probabilita cercata
si puo scrivere nella forma
/OO 8‘/10Z eiwf,-t

ot

1 2
h%}?i

(5)

Pi—)f:

Dimostrare che si riottiene in effetti il risultato precedente e si verifichino
i limiti dati nella risposta alla domanda b).



Problema 1- MQ1

In una prima rozza approssimazione una molecola di benzene si puo immaginare
come un esagono regolare con un lato di L = 1.4 A. Un elettrone pud muoversi
sui lati di questo esagono, effettivamente un anello di circonferenza 6 L, come
una particella libera. Si dia una stima della separazione dei primi due livelli
energetici specificandone le rispettive degenerazioni. Per 1’espressione in eV si
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Problema 2- MQ1

Una particella di spin S ha, in generale, un momento magnetico proporzionale
all’operatore di spin. Per una particella di spin 1/2 porremo:

47?2 ~ 150.8eV; per {=1A

p=po (6)

Il momento magnetico si accopia con un campo magnetico con la nota Hamil-
toniana

H=—-u-B (7)
Consideriamo un campo magnetico costante lungo ’asse z.
a) Esiste qualche componente del momento angolare che si conserva?

b) Scrivere autovalori ed autostati del sistema descritto dall’Hamiltoniana

(7)-

c¢) Al tempo ¢t = 0 il sistema ha spin polarizzato completamente nella di-
rezione che fa un angolo 6 con l'asse z, diciamo nel piano z—z, quindi
lungo il versore n = (sin#,0,cosf). Scrivere lo stato (spinore) [¢) al
tempo ¢t = 0 e verificare che ¢ un autostato di n - o con autovalore +1.

d) Calcolare la sua evoluzione temporale |1(t)).

e) Calcolare i valori medi delle tre componenti del momento magnetico al
passare del tempo: come descrivereste classicamente il risultato?



Soluzioni

Problema 1

a) Al primo ordine perturbativo

IVlk
k)
=1+ Sl

quindi per il fondamentale e lo stato eccitato

1= (s)s 2=("F) ®

b) Per 7 — oo la perturbazione & adiabatica e lo stato non cambia, cioe la
probabilita di transizione & nulla. Per 7 — 0 la perturbazione & “istantanea”
quindi ci si aspetta
2
_ ’ 2 Wi
Py =12 = 25 ©)

¢) Perturbativamente ampiezza di probabilita &

= @) = (—52.1).(a.b) = (—5alt) + ()

e quindi la probabilita
Piog = Jim A1) (10)

Siccome w; € gia al primo ordine nella perturbazione basta calcolare b(t) al
primo ordine, tenendo a(t) all’ordine 0.

Si puo risolvere in rappresentazione di interazione, oppure scrivere diretta-
mente

zh% _ UBb(t) — uBy f(alt) = b= —iwb+ ior f(t)a(t)

All’ordine zero a(t) = exp(iwt). Scrivendo b(t) = exp(—iwt)C(t) si ha per C
I’equazione ' ‘ ‘

C = iw et f(t)a(t) ~ iw ™ f(t)
Quindi

t
C(t) = iwy / F(teXet ay

Inserendo l'espressione di f(t)

1 1 2wt _ 1 1et/T — W1 9
o) — i 1 =21 2iwt Co(t
(f) = i {22iw+l+ 2w 2 22&;—} 2,0 Ol
Per t — oo,
T 111 . 2iw i]_e_ 7
C t _ - _— | = T E—— 5. | =5 .7 5. 1
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Quindi

W1 it Liwtw1 1/7°
b(t) = Ee +e i+ L T (11)

All’ordine leading '
Cl(t) — ezwt

quindi per 'ampiezza di probabilita

w1 w1 1/
i =——a(t)+bt)=e W~ 12
e quindi per la probabilita (10)
w? 1 2
Pi‘} = L — ]'
P 40? 40?2 11 (13)

Correttamente la probabilita riproduce i limiti elencati nella risposta b).
Per la trattazione perturbativa standard notiamo che f(¢) ¢ continua ed
effettuando la derivata

B
ot w1 27’6

Siccome wy; = 2w, la (5) si scrive

(14)

2 2
p vt /Oo Lozt @i |11
AR oo 2T 4w0? |27 \2iw+ 1 2w -1
_wff 1/72 2
 4w? |[4w? +1/72

che coincide con la (13).

Problema 1 - MQ1

L’esagono ha una lunghezza totale L. = 6L, e su questo percorso unidimension-
ale l’elettrone puo muoversi come una particella libera, soggetta alla condizione
di periodicita. Le autofunzioni sono della forma

P(x) = A exp(ikz)

x indica la coordinata lungo ’esagono.
La condizione di periodicita e

Y@+ Le) =¢(x) ;= knLle =2n1 = k= 7 nez

I livelli energetici sono
h? 4m?
n=5_ 79 1
2m L2



il livello n = 0 & non degenere, gli altri sono due volte degeneri. Per il problema
considerato,
L.,=6-14=84A

per cui

_150.8eV

2_ 1)~
AE = — 5 (2"~ 1) ~ 64eV.

Problema 2 - MQ1

1 Se il campo e diretto lungo 'asse z ’'Hamiltoniana &

H = —uBo, (15)
che commuta con le rotazioni attorno all’asse z, quindi s, si conserva (& pro-
porzionale all’Hamiltoniana).

2 Gli autovalori sono (spin in su in giu):

E,=—uB E_=uB (16)

() =)

3 Una rotazione antioraria di # attorno all’asse y porta il versore dell’asse z
sul versore n, quindi lo stato descritto nel testo e

0 ) 0
_ —i%e, _ (COS5 —sing 1 _ [cossy
Y=ez (sin§ cos 2 ) (O) (Sin 3) (18)

2 2

I relativi autostati

Verifichiamo che lo stato € un autovalore di o - n con autovalore +1

cosf sinf )

o -n=sinfo, + cosfo, = (

sinf —cosf
quindi
cos 8 cos g + sin @sin g cos ?
o-nyY=| ) O c.v.d.
sin 6 cos 5 — cos 0 sin 5 Si 5
4 Siha

’ .
= COS -w SN — w-—
2 " 2

quindi I’evoluzione temporale &

0 ,—iuB/ht

0 _inB/ht

0 0 . cos 5 e

(t) = cos §6ZMB/M wy +Sin§e_“‘Bt/hw_ = ( ) ° ) (19)
SIH§€



5 Siha

(]o.|1h) = cos? g — sin? g = cosf (20)

costante nel tempo, come aspettato.
Per le altre componenti, posto Q = uB/h:

0 it
0 . 0 . sin 5 e
(|oe|h) = (cos =¥ sin —e™¥) T = sin§ cos(20t)
2 2 cos & it
2

2 2 i cos § €%

S 8 it
0 . o0 . —tsinge . .

(ihloy|9) = (cos —e ¥ sin —eM) = — sin 0 sin(29)
Come si vede si ha un moto di precessione orario. Questo € in accordo con la
descrizione classica del moto per un momento magnetico. Classicamente si ha
un momento delle forse u A B e quindi (%S ¢ il momento angolare)

dS
h—=uAB 21
il (21)
con la nostra definizione
= = 2—'uhs
p=po=—
e quindi la (21) diventa
du  2u
—=—uAB
a _ n P

che ¢ descrive appunto una precessione oraria con velocita angolare 2uB/h = 2



