
Prova Scritta di Meccanica Quantistica

Facoltà di Scienze, M.F.N., Università di Pisa
08 giugno 2012 (A.A. 11/12)

Tempo a disposizione: 3 ore (3.5 per (B)). Risolvere:

Problemi 3 e 4 per il Compitino 2 del corso annuale MQ (A);

Problemi 1, 2 + [3 o 4 a scelta] per la prova scritta completa del corso annuale MQ (B);

Problemi 1 e 2 per la prova scritta di MQI, vecchio ordinamento (C);,

Problemi 3 e 4 per la prova scritta di MQII, vecchio ordinamento (D).

Indicate chiaramente per quale dei (A)-(D) avete optato.

Problema 1.

Una particella di massa m, spin 1
2 si muove in una retta. L’Hamiltoniana è data da:

H =
p̂2

2m
+gsz p̂+hsx , (1)

dove g≥ 0, h≥ 0 sono costanti.

Per g = h = 0 la particella è libera, con il noto spettro, E(p) = p2/2m ≥ 0, −∞ < p < ∞. Ogni livello
E > 0 è quattro volte degenere (per p = ±|p| e per sz = ± 1

2 ); il livello con E = 0(p = 0) è doppiamente
degenere solo per lo spin.

(i) Considerate prima il caso di h = 0, g 6= 0: determinare lo spettro (dell’energia) e fare uno schizzo di E(p)
in questo caso. Discutere la degenerazione.

(ii) Considerando invece il caso di g = 0, h 6= 0, determinare lo spettro e fare uno schizzo di E(p). Discutere
la degenerazione.

(iii) h 6= 0; g 6= 0: Studiare lo spettro, fare uno schizzo di E(p) e determinare l’energia dello stato fondamen-
tale. Nel limite p→+∞, lo stato di energia più bassa corrisponde a sz = + 1

2 o sz =− 1
2 ?

Suggerimento: considerare l’operatore (o gli operatori) che commuta con H.
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Problema 2.

Un nucleo A di spin-parità JP = 2− inizialmente si trova nello stato |J,M〉 = |2,2〉. Esso decade ad un
tratto, a riposo, in due nuclei B e C ambedue di spin-parità ( 1

2 )+. Sia la parità che il momento angolare totale
sono conservate nel decadimento.

(i) Dire quali valori del momento angolare orbitale L (del moto relativo nello stato finale) sono possibili.
Scrivere la funzione d’onda dello stato dei due nuclei nello stato finale, in termini delle armoniche
sferiche, di funzioni d’onda di spin e delle funzioni radiali incognite.

(ii) Una misura dello spin sBz ha dato il risultato, − 1
2 . Che cosa si può dedurre (*) sui valori del momento

angolare orbitale L?

(iii) Si misurano contemporaneamente sBz e sC z con due apparati à la Stern-Gerlach, posti in direzioni
(θ,φ) = (π

2 ,0),(π

2 ,π). I risultati di ripetute misure indicano che le probabilità relative siano tali che

P↑↑� P↓↓ . (2)

Che cosa implica questo fatto sullo stato di momento angolare orbitale L (*) nello stato finale?

* Per es., “il termine L = 0 è dominante”, “il termine L = 40 è presente”, oppure “i termini L = 1, L = 2,
L = 3 sono paragonabili”, etc.

N.B. Potete usare i coefficienti di Clebsch-Gordan e le armoniche sferiche forniti separatamente.
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Problema 3.

Un oscillatore armonico tridimensionale isotropo

H =
p2

2m
+

mω2

2
r2, (3)

che si trova inizialmente nello stato fondamentale, subisce una perturbazione

V = f δ(z− vt) (4)

dove f ,v sono costanti.

(i) Calcolare la probabilità P1 al primo ordine in f che l’oscillatore si trovi in un primo stato eccitato a t→∞.

(ii) Discutere il limite adiabatico e il limite di perturbazione istantanea, utilizzando il risultato del punto (i).
Come si comporta P1 come funzione di v?

(iii) Più in generale, i.e., senza limitare al primo stato eccitato, ma sempre al primo ordine di perturbazione
in f , dire quali stati del momento angolare orbitale {`,m = `z} vengono eccitati.

(iv) Trovare la probabilità PN che l’oscillatore si trovi nell’N-simo stato eccitato a t → ∞. (Suggerimento:
utilizzate il formalismo di operatori a,a† per l’oscillatore armonico lineare, insieme a certe formule
note per un operatore del tipo, U(β) = eβa†−β∗a. )

Per tenere pulite le formule, ponete m = ω = h̄ = 1 dappertutto, lasciando solo i parametri f e v.

Problema 4.

L’atomo di magnesio (il numero atomico Z = 12) nello stato fondamentale è descritto dalla configurazione
elettronica

1s2 2s2 2p6 3s2 . (5)

Il primo stato eccitato è:
1s2 2s2 2p6 3s3p . (6)

(i) Specificare il termine spettrale dello stato fondamentale, (5).

(ii) Senza tenere conto delle interazioni spin-orbita, quale sarebbe la degenerazione dello stato (6)?

(iii) Tenendo conto delle interazioni spin-orbita, dire in quanti sottolivelli si divide il livello (6), e con quale
degenerazione ciascuno.

(iv) Quante righe si osserveranno nella transizione (6)→ (5)?

(v) L’atomo è sottoposto ad un campo magnetico esterno uniforme e debole*. Quante righe di transizione di
dipolo (6)→ (5) ci aspettiamo di ossservare? Considerate l’effetto Zeeman (assunto più piccolo* delle
tipiche correzioni spin-orbita) per i due elettroni separatamente e li sommate semplicemente.
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?ClebschGordan

ClebschGordan@8 j1, m1<, 8 j2, m2<, 8 j, m<D gives the Clebsch-Gordan

coefficient for the decomposition of È j, m\ in terms of È j1, m1\ È j2, m2\. �

ClebschGordan@83, 2<, 81, 0<, 82, 2<D

-

5

21

ClebschGordan@83, 1<, 81, 1<, 82, 2<D

1

21

ClebschGordan@83, 3<, 81, -1<, 82, 2<D

5

7

ClebschGordan@82, 2<, 81, 0<, 82, 2<D

2

3

ClebschGordan@82, 1<, 81, 1<, 82, 2<D

-

1

3

ClebschGordan@81, 1<, 81, 1<, 82, 2<D
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?SphericalHarmonicY

SphericalHarmonicY@l, m, Θ, ΦD gives the spherical harmonic Yl

mHΘ, ΦL. �

SphericalHarmonicY@1, 1, Θ, ΦD
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Soluzione

Problema 1.

(i) Per h = 0 possiamo considerare gli stati di sz =± 1
2 separatamente. Per sz = 1

2

H↑ =
p̂2

2m
+ g

2 p̂ =
(p̂+ mg

2 )2

2m
− mg2

8
. (7)

Gli autostati sono
eipx/h̄ (8)

con autovalori

E↑(p) =
(p+ mg

2 )2

2m
− mg2

8
≥−mg2

8
. (9)

Ogni stato con E(p) >−mg
8 è doppiamente degenere; lo stato di E(p) =−mg2

8 (p =−mg2

2 ) è singolo.

Analogamente per lo stato di spin giù, sz =− 1
2 ,

E↓(p) =
(p− mg

2 )2

2m
− mg2

8
≥−mg2

8
. (10)

Ogni stato con E(p) > −mg
8 è doppiamente degenere; lo stato di E(p) = mg2

8 (p = −mg
2 ) è singolo.

(vedi Fig. )

Considerando insieme gli stati di sz =± 1
2 concludiamoc che il grado di generazioneè:

D = 2, E =−mg2

8
; D = 4, E >−mg2

8
. (11)

(ii) Per g = 0, h > 0, gli autostati di E corrispondono agli autostati di sx con sx =± 1
2 . Lo spettro è

Esx=±1/2 = p2

2m ±
h
2 , (12)

D = 1, E =− h
2 ; D = 2, − h

2 < E < h
2 , D = 3, E = h

2 ; D = 4, E > h
2 ; (13)

(vedi Fig. 2)

(iii) Anche nel caso g 6= 0, h 6= 0, p̂ continua a comutare con H

[p̂,H] = 0 (14)

perciò possiamo prendere
Φ = χ(p)eipx/h̄. (15)

χ(p) soddisfa l’equazione agli autovalori(
p2

2m + gp
2

h
2

h
2

p2

2m −
gp
2

)
χ = E χ. (16)
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Gli autovalori dell’energia sono

E±(p) = p2

2m ±
1
2

√
g2 p2 +h2 . (17)

Si noti che le due curve E±(p) non si incrociano mai: E+(p) > E−(p), ∀p. Vedi Fig. 3 Il grado di
degenerazione:

D = 2, E = Emin; D = 4, Emin < E <− h
2 ; D = 3, E =− h

2 ; (18)

D = 2, − h
2 < E < h

2 ; D = 3, E = h
2 ; D = 4, E > h

2 ; (19)

dove
Emin =− 1

2mg2 (m2g4

4 +h2) <− h
2 (20)

è l’energia dello stato fondamentale, doppiamente degenere.

Dalla (16) o direttamente dalla (1) si vede che a p→ +∞ lo stato di energia più bassa corrisponde a
sz =− 1

2 . A p→−∞ invece lo stato con E−(p) corrisponde a sz = + 1
2 . Vice versa per lo stato più alto,

E+.
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Figura 1:
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Figura 3:

Problema 2.

(i) Lo spin totale di B e C può essere o S = 1 o S = 0. La conservazione del momento angolare implica che
per S = 1 i valori possibili del momento angolare orbitale sono L = 1,2,3 mentre per S = 0 l’unico
valore possibile è L = 2. Tenendo conto della parità, si conclude che i valori possibili di S,L sono
S = 1, L = 1 o L = 3. La fuzione d’onda avrà la forma

Ψ = R1 Y1,1 |↑↑〉+R3

[
1√
21

Y3,1 |↑↑〉−
√

5
21 Y3,2 | ↑↓+↓↑√

2
〉+
√

5
7 Y3,3 |↓↓〉

]
. (21)

(ii) Una misura di sBz =− 1
2 significa che il termine R3 è presente, i.e., R3 6= 0, ma non dice nulla su R1.

(iii) Nella direzione (θ,φ) = (π

2 ,0), sinθ = 1, cosθ = 0 per cui

Y1,1 =− 1
2

√
3

2π
, Y3,1 = 1

8

√
21
π

, Y3,2 = 0, Y3,3 =− 1
8

√
35
π

. (22)

La funzione d’onda prende la forma

− 1
2

√
3

2π
R1 |↑↑〉+R3

[
1
8

√
1
π
|↑↑〉− 5

8
√

π
|↓↓〉

]
. (23)
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Nella componente di L = 3 i due termini |↑↑〉 e |↓↓〉 sono tali da dare la probabilità P↓↓ molto più
grande rispetto a P↑↑. Perciò il fatto sperimentale P↑↑� P↓↓ significa che

|R1| � |R3|, (24)

i.e., la componente L = 1 è dominante.

Problema 3.

(i) Soltanto l’oscillatore in direzione z viene eccitato; la probabilità di eccitare al primo stato N = 1 è

P = 1
h̄2

∣∣∣∣Z ∞

−∞

dt Vki eiωkit
∣∣∣∣2 = 1

h̄2

∣∣∣∣Z ∞

−∞

dt 〈0,0,1| f δ(z− vt)|0,0,0〉eiωkit
∣∣∣∣2

= f 2

h̄2

∣∣∣∣Z dt dzψ
∗
1(z)δ(z− vt)ψ0(z)eiωkit

∣∣∣∣2 (25)

Gli integrali su t e z possono essere eseguiti in un ordine o l’altro, utilizzando la funzione delta.
Integrando in t prima, e ponendo h̄ = m = ω = 1 si ha

P = f 2C2
1C2

0

∣∣∣∣Z dz2 1
v ze−z2

eiz/v
∣∣∣∣2 = f 2

2v4 e−1/2v2

= ω f 2

2mv4 h̄ e−ωh̄/2mv2
(26)

dove nell’ultima riga sono stati rimessi le costanti dimensionali.

(ii) Nel limite adiabatico, v → 0, P tende a zero dovuto al fattore esponenziale. Nel limite opposto di
variazione rapida, v→ ∞, P tende a zero come 1/v4.

(iii) Per vedere quali stati di momento angolare vengono eccitati, conviene integrare prima in t. Si arriva
all’ampiezza di transizione

f
v 〈0,0,N|eizN/v|0,0,0〉. (27)

Visto che
z = r cosθ, (28)

eizN/v contiene tutte le potenze di cosθ ∝ T1,0; d’altronde non c’è la dipendenza da φ nell’operatore.
Chiaramente tutti i momenti angolari

` = 0,1,2, . . . , (29)

sono eccitati, con m = 0.

(iv) La probabilità di eccitazione dell’N-simo stato |0,0,N〉 è

P = f 2

v2 |〈N|eiNz/v|0〉|2 = f 2

v2N! |〈0|a
N eiN(a+a†)/

√
2v|0〉|2 (30)

Utilizzando le formule note per U(β) = eβa†−β∗a come

aU(β) = U(β)(a+β); U(β) = e−|β|
2/2eβa†

e−β∗a , (31)

dove β≡ iN/
√

2v, si trova che
PN = f 2

v2
1

N! (
N2

2v2 )Ne−N2/2v2
(32)

che coincide con quanto trovato al punto (i) per N = 1.
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Problema 4.

(i)
1S0 . (33)

(ii) L’elettrone nello strato 3p ha sei possibili stati; l’elettrone nello strato 3s due. Lo stato eccitato è dunque
6×2 = 12 volte degenere.

(iii) L’energia dell’elettrone nello strato 3p si divide in due sottolivelli j1 = 3
2 e j1 = 1

2 , con quattro e due
stati, rispettivamente. L’energia dell’elettrone 3s non subisce l’effetto spin-orbita (due stati). Il livello
dello stato (6) dunque si divide in due, il sottolivello alto con il grado di degenerazione 4× 2 = 8,
quello di sotto in 2×2 = 4 stati degeneri.

(iv) Due.

(v) Il fattore di Landé per l’elettrone è, in tre casi,

g j = 4
3 , ` = 1, j = 3

2 ; (34)

g j = 2
3 , ` = 1, j = 1

2 ; (35)

g j = 2, ` = 0, j = 1
2 ; (36)

quindi non ci sono degenerazioni accidentali. Il primo stato ecccitato, divisi in due livelli da spin-
orbita, si divide ulteriormente. Visto che l’elettrone nello strato 3p si divide in 6 livelli (4 di j1 = 3

2 e 2
di j1 = 1

2 ) e l’elettrone nello strato 3s in due, la loro somma (l’energia del primo stato (6)) si divide in
12 possibili valori di energie diverse.

Due di loro tuttavia corrispondono a Jtot z = 2 e Jtot z =−2; questi stati non possono decadere allo stato
fondamentale con L = S = J = 0.

Restano dieci righe.
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