
Appello di Meccanica Quantistica I
Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,

8 settembre 2006 (A.A. 05/06)
(Tempo a disposizione: 3 ore. )

Problema 1
Una particella di massa m si muove confinata in una cavità di forma sferica di raggio a,

i.e., nel potenziale

V (r) =

{
0, r < a,

∞, r ≥ a.
(1)

(i) Trovare approssimativamente i primi quattro livelli di energia, e determinare i nu-
meri quantici (n, `), facendo uso dei grafici di funzioni di Bessel sferiche j`(x)
(` = 0,1,2,3) riportata nella Fig. 1; N.B. nel caso di ` = 0 si possono calcolare i
livelli esattamente.

(ii) Calcolare la pressione che la particella, nello stato fondamentale, esercita sulla parete
della sfera;

(iii) Come si può determinare i livelli di energia, se la particella può muovere solo tra le
superficie di due sfere di raggi b e a, i.e., nel potenziale

V (r) =


∞, r ≤ b,

0, b < r < a,

∞ r ≥ a
(2)

? Indicare il metodo, e scrivere l’equazione che determina i livelli di energia. Non è
necessario risolverla.

Problema 2.
Una nucleo A di spin 1 e parità (−), a riposo, decade spontaneamente in due nuclei B

e C, di spin-parità (1/2)+ e (1/2)−, rispettivamente. Nel processo sono conservati sia il
momento angolare totale che la parità.

i) Elencare tutti i possibili valori di (S, `), dove S = sB + sC; ` è il momento angolare
orbitale del moto relativo tra B e C;

ii) Esprimere la funzione d’onda dello stato finale in termini di armoniche sferiche, di
funzioni di spin di B e C e di funzioni radiali indipendenti (incognite), per Jz(A) = 1.
Usare le coordinate sferiche (r,θ,φ) per la posizione relativa r ≡ rB− rC.

iii) Supponiamo di misurare la componente z di spin sB e sC contemporaneamente, con ap-
parecchi à la Stern-Gerlach posti nelle direzioni (θ,φ) = (π/4,π) (per B) e (3π/4,0)
(per C). (Fig. 2). Scrivere la funzione d’onda di cui al punto ii), esplicitando i va-
lori delle armoniche sferiche a (θ,φ) = (π/4,π). Esprimere le quattro ampiezze di
transizione,

|Jz(A)〉 → |sz(B),sz(C)〉 (3)

sz(B) =±1
2
, sz(C) =±1

2
, Jz(A) = 1, (4)

in termini di certo numero di costanti incognite. Calcolare, sempre per Jz(A) = 1,
le probabilità condizionate, che lo spin della particella C risulti up o down, sapendo
che la misura dello spin di B ha dato il risultato sz(B) =−1/2. (N.B. Le probabilità
condizionate analoghe non possono invece essere calcolate nel caso di sz(B) = +1/2,
senza ulteriori informazioni.)
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Soluzione

Problema 1.

(i) L’equazione di Schrd̈inger radiale è quella libera,

R′′+
2
r

R′+(k2− `(`+1)
r2 ]Rk,`(r) = 0, (5)

di cui la soluzione generale è della forma

Rk,`(r) = c1 j`(k r)+ c2 n`(k r). (6)

La regolarità della funzione d’onda all’origine impone

c2 = 0; (7)

la condizione a r = a richiede che sia soddisfatta

j`(k a) = 0. (8)

I livelli di energia è quindi determinati dagli zeri di j`(k a). Dal grafico
vediamo che i primi quattro livelli corrispondono al valore di
kn a ' 3.14, 4.5, 5.75, 6.28, con il momento angolare orbitale ` = 0,1,2,0,
rispettivamente. Oppure (n, `) = (1,0),(2,1),(3,2),(2,0), e E = k2 h̄2

2m . In
particolare j0(x) = sinx

x = 0 per x = nπ, n = 1,2, . . ..

(ii) L’energia dello stato fondamentale è

E0 =
π2 h̄2

2ma2 . (9)

Supponiamo di comprimere la sfera, a → a−δa. L’energia aumenta di

E0(a−δa)−E0(a) =
π2 h̄2

ma3 δa. (10)

Questa quantità è uguale al lavoro richiesto: cioè

P ·4πa2 ·δa =
π2 h̄2

ma3 δa, (11)

da cui

P =
π h̄2

4ma5 . (12)

(iii) In questo caso la soluzione all’interno è della forma generale, (6). La
condizione al contorno a r = b e r = a è

c1 j`(k b)+ c2 n`(k b) = 0, c1 j`(k a)+ c2 n`(k a) = 0. (13)

Per avere una soluzione per c1,2, k deve essere tale che

det
∣∣∣∣ j`(k b) n`(k b)

j`(k a) n`(k a)

∣∣∣∣= 0. (14)

Questo dà la condizione di quantizzazione.
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Problema 2.

i) Lo spin totale Stot prende valori 1 o 0. Dalla conservazione del momento
angolare totale segue che i valori possibili per ` sono ` = 0,1,2 per Stot = 1;
per Stot = 0 l’unico valore possibile è ` = 1. La conservazione di parità
tuttavia permette soltanto i valori {Stot , `},= {1,2}, e {Stot , `}= {1,0}.

ii) La funzione d’onda dello stato finale richiesta è

ψ(1,1)

= R2(r)

(√
3
5

Y2,2(θ,φ)χ(1,−1)−
√

3
10

Y2,1(θ,φ)χ(1,0)+
1√
10

Y2,0(θ,φ)χ(1,1)

)
+ R0(r)Y0,0 χ(1,1) (15)

dove

χ(1,1) = |↑↑〉, χ(1,0) = (|↑↓〉+ |↓↑〉)/
√

2, χ(1,−1) = |↓↓〉. (16)

iii) A θ = π/4, φ = π le armoniche sferiche prendono i valori,

Y2,0 =
1
2

√
5

16π
, Y2,±1 =±1

2

√
15
8π

, Y2,±2 =
1
2

√
15

32π
, Y0,0 =

√
1

4π
,

(17)
per cui

ψ(1,1) = R2(r)

(
1
2

√
9

32π
χ(1,−1)− 1

2

√
9

16π
χ(1,0)+

1
2

√
1

32π
χ(1,1)

)
+

+ R0(r)

√
1

4π
χ(1,1) (18)

Possiamo allora scrivere le quattro ampiezze in termini di due incogniti

T↑↑ = C2 +C0; T↑↓ = T↓↑ =−3C2; T↓↓ = 3C2; (19)

Le probabilità condizionate richieste sono

P↓(↑) =
9|C2|2

9|C2|2 +9|C2|2
=

1
2

; P↓(↓) =
9|C2|2

9|C2|2 +9|C2|2
=

1
2
. (20)

Le probabilità condizionate analoghe non possono essere calcolate nel caso di
sz(B) = 1/2, visto che il rapporto C2/C0 non è noto.
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