
Prova Scritta di Meccanica Quantistica

09 gennaio 2013 (A.A. 12/13)

Per MQI, risolvere il Problema 1; per MQII o per il corso annulae di MQ, risolvere il Problema 2.

Tempo a disposizione: 3 ore

Problema 1.

Sia H0 l’Hamiltoniana di una particella di spin zero in un potenziale a simmetria centraleV (r), l’equa-

zione di Schrödinger è

i h̄
∂
∂t

ψ = H0 ψ . (1)

(i) Nel caso di un oscillatore armonico isotropo,

H0 =
p2

2m
+

mω2

2
r2, (2)

si scrivano le energie e le degenerazioni dei primi due livelli del sistema.

Tornando al caso di genericoV (r), supponiamo ora di effettuare una trasformazione unitariagenerica,

dipendente dal tempo,S(t) = S(r,p; t):

ψ′ = S(t)ψ , S S† = S†S = 1 . (3)

(ii) Si scriva l’equazione di Schrödinger perψ′

i h̄
∂
∂t

ψ′ = H ′ ψ′ (4)

e si trovi la nuova HamiltonianaH ′ in termini di H0, S(t) e ∂
∂t S(t).

(iii) Supponiamo di voler descrivere l’evoluzione del sistema inun sistema di riferimento che ruota con

velocità angolare costanteΩ, in senso antiorario, attorno all’assez. In questo caso la trasformazione

S(t) è data da

S(t) = eiLz Ωt . (5)

Si trovi la corrispondente HamiltonianaH ′.

(iv) Il sistema di riferimento ruotato, descritto daH ′, resta a simmetria centrale o no? La parità è una

simmetria del sistema?

(v) Ritornando al caso specifico dell’oscillatore armonico isotropo (2), si scrivano i corrispondenti autovalori

di H ′ nel sistema di riferimento ruotato: come cambia lo spettro (dei primi stati di cui al punto (i))?

(vi) Ci si chiede se sia possibile, nel sistema ruotante, scegliere una velocità angolareΩ in modo tale che

sullo stato fondamentale

〈ψ0|x|ψ0〉 6= 0 :

x è la coordinata nel sistema ruotante.
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Problema 2.

Una particella di massam e caricae è si muove in un potenzialeV (r) che si annulla perr > a. Il potenziale

ha uno stato legato la cui funzione d’onda, perr > a ha la forma:

ψ0(r) =
( κ

2π

)1/2 e−κ r

r
, κ =

√
−2mE0

h̄
(6)

doveE0(< 0) è l’energia dello stato legato. Questo sistema è sottoposto ad un campo elettrico

E = (εsinωt,0,0), ε = cost. (7)

a partire dat = 0. Si vuole studiare la probabilità (per intervallo unitario di tempo) di ionizzazione in teoria

delle perturbazioni, assumendo che lo stato finale possa essere approssimato con un’onda piana.

(i) Considerando solo la regioner > a (doveV ≡ 0), giustificare la forma della funzione d’onda (6), data

l’energiaE0(< 0), e specificare il momento angolare dello stato.

(ii) Determinare la soglia perω perché avvenga la ionizzazione.

(iii) Determinare la distribuzione angolare della particella emessa, utilizzando solo argomenti di simmetria

(i.e., il teorema di Wigner-Eckart).

(iv) Calcolare la distribuzione inp = (p,θ,φ) utilizzando la regola di Fermi, e integrando, trovare il rate di io-

nizzazione. Commentare sulla distribuzione angolare della particella, paragonando il calcolo esplicito

con la conclusione del punto (iii).

Nota: Per il calcolo del punto (iv), si assuma che la forma della funzione d’onda (6) sia valida per tutti i valori

di r, r > 0. (Questo corrisponde al caso di un potenziale delta all’origine.)

Formulario

Z

d3r e−ik·r e−κr

r
=

4π
k2 + κ2 . (8)

dWf i =
2π
h̄
|Ff i|2 δ(E f −Ei − h̄ω)dΦ . (9)

Densità di stati: per una particella libera tridimensionale, ψ = eip·r/h̄

dΦ =
d p p2 dΩ
(2πh̄)3 , (10)
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Soluzione

Problema 1.

1. Le energie sono

En1,n2,n3 =
3
2

h̄ω+ h̄ω(n1 + n2+ n3) =
3
2

h̄ω+ Nh̄ω ; deg. =
1
2
(N +1)(N +2) (11)

(N = n1 + n2+ n3.)

2. Derivando:

ih̄∂tψ′ = S H0ψ+ ih̄(∂tS)ψ = SH0S−1ψ′ + ih̄(∂tS)S−1ψ′

quindi

H ′ = SH0S−1+ ih̄(∂tS)S−1 (12)

3. Una rotazione antioraria del sistema di riferimento è equivalente ad una rotazione oraria degli stati, per

cui

S(t) = exp(iLzΩ t) (13)

Per un potenziale centraleH0 è invariante sotto rotazioni, i.e.,H0 commuta conS, quindi

H ′ = H0− h̄ΩLz (14)

4. La nuova Hamiltoniana è

H ′ =
p2

2m
+

1
2

mω2 r2− h̄ΩLz (15)

che ha solo simmetria cilindrica, ed è invariante sotto parità.

5. I primi due livelli hanno funzioni d’onda proporzioanli a

exp(−αr2) (1,z,x + iy,x− iy)

con Lz rispettivamente(0,0,1,−1). Quindi il livello fondamentale resta invariato mentre il primo

eccitato nel sistema ruotante si divide in 3

E ′
0 = E0 =

3
2

h̄ω E ′
1,0 = E1,0 =

3
2

h̄ω+ h̄ω

E ′
1,1 =

3
2

h̄ω+ h̄ω− h̄Ω E ′
1,−1 =

3
2

h̄ω+ h̄ω+ h̄Ω

6. Per avere〈x〉 6= 0 occorre avere una degenerazione fra stati a parità diversa. Vediamo che perΩ = ω il

livello fondamentale diventa degenere con la componente con Lz = 1 del primo eccitato. Una funzione

d’onda del tipo, ad esempio

ψ =
1√
2
(ψ0 + ψ1,1)

ammette un valor medio non nullo perx.
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Problema 2.

(i)
∆H =

eε
2i

xeiωt + h.c. (16)

L’ionizzazione richiede che l’energia finale,ωh̄+ E0 sia positiva:

ω ≥−E0

h̄
=

κ2h̄
2m

, (E0 = −κ2h̄2

2m
).

(ii) Visto che lo stato iniziale è in ondaS, mentre la perturbazione è

∝ x ∝ T1,1−T1,−1,

per il teorema di Wigner-Eckart lo stato finale è nella stessa combinazione di tensori sferici: la distri-

buzione angolare dip finale è data da:

cost..dΩ |Y1,1−Y1,−1|2 = dΩ
3
4π

sin2 θcos2 φ = dφdθ
3
4π

sin3 θ cos2 φ
Z

dΩ
3
4π

sin2 θcos2 φ = 1 .

(iii)

dw =
2π
h̄
|Ff i|2δ(E f −Ei −ωh̄)dΦ;

Ponendo

η =
eε
2i

, (17)

Ff i = η
Z

d3r e−ik·r x
( κ

2π

)1/2 e−κr

r

= η
( κ

2π

)1/2
i

∂
∂kx

Z

d3r e−ik·r e−κr

r

= η
( κ

2π

)1/2
i

∂
∂kx

4π
k2 + κ2 = −8πiη

( κ
2π

)1/2 kx

(k2 + κ2)2

= −8πh̄3 η i
( κ

2π

)1/2 px

(p2 + κ2h̄2)2
(18)

dΦ =
d p p2 dΩ
(2πh̄)3 , δ(E f −Ei−ωh̄) =

m
p

δ(p− p∗), p∗ =
√

2m(ωh̄+ E0) .

Perciò

dw =
2π
h̄

64π2h̄6|η|2 κ
2π

p2
x

(p2 + κ2h̄2)4
δ(p− p∗)

m pd pdΩ
(2πh̄)3 , p∗ =

√

2m(ωh̄+ E0).

La distribuzione in impulso è data da (a parte normalizzazione)

p2
x

(p2 + κ2h̄2)4
δ(p− p∗)

m pd pdΩ
(2πh̄)3 , p∗ =

√

2m(ωh̄+ E0).

La distribuzione angolare∝ p2
x ∝ sin2 θcos2 φ coincide con quella ottenuta al punto (ii); integrando su

p usando la funzione delta, si ha

w =
32κ |η|2h̄2 m p∗3

3(p2 + κ2h̄2)4
, p∗ =

√

2m(ωh̄+ E0), |η| =
∣

∣

∣

eε
2

∣

∣

∣
,
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