Prova Scritta di Meccanica Quantistica I

Facolta di Scienze, M.E.N., Universita degli Studi di Pisa,
10 gennaio 08 (A.A. 07/08)

Tempo a disposizione: 3 ore.
Problemi 1 e 2 per il recupero Compitino I;
Problemi 2 e 3 per il recupero Compitino II.
Per Appello I, risolvere Prob. 1 (i), Prob. 2 (ii), (iii), e Prob. 3.

Problema 1.

Una particella di massa m € vincolata a muoversi sul segmento —a < x < a (il potenziale
¢ infinito per |x| > a). All’interno di questo segmento il potenziale & (Vp > 0):

0, —a<x< —b,

V(x) =14V, —b<x< —b, (1)
0, b<x<a,

a b b @
X R

(i) Determinare il valore di Vj di modo che la funzione d’onda dello stato fondamentale
sia costante e non nulla per —b < x < b. Qual’¢ ’energia dello stato fondamentale
in questo caso?

(ii) Per tale valore di Vj trovare I’equazione che determina implicitamente 1’energia del
q p g
primo stato eccitato. Trovare la soluzione di tale equazione approssimativamente,
nel caso a > b.

(iii) Esiste, invece, un valore di Vj tale che la funzione d’onda del primo stato eccita-
to sia una funzione lineare di x, i.e., Yj; o< x? Trovare I’equazione che determina
implicitamente E in questo caso, e dimostrare che tale Vj soddisfa alla relazione:

2 Ve T2
8m(a—b)? 0 2m(a—b)?

Suggerimento: utilizzate I’argomento della parita, per semplificare 1’analisi.



Problema 2.

Un sistema composto di due particelle A e B, ambedue di spin %, ¢ descritto dalla
funzione d’onda (o = reale):

Y =cosa |l |)+sina|[T), 2)

dove

Th=mell), IUn=lheln).

(i) Esprimere lo stato (2) in termini di autostati di spin totale S,zm, dove S;or = S1 + So.
Qual’¢ la probabilita che la misura di S, dia il risultato 0?

(i) Supponiamo che le particelle A e B si trovino a distanza tale che non possano interagire
tra di loro. Determinare la matrice densita p per un osservatore in grado di misurare
solo il primo spin. !

(iii) Calcolare la quantita 2 :
E =—Tr(plogp).

Trovare i minimi ed i massimi di E (o) rispetto alla variazione di o, e discutere il
significato di questi casi speciali.

Problema 3.

Un oscillatore tridimensionale (con carica elettrica g) € sottoposto ad un campo esterno
elettrico statico e omogeneo (costante), E:

2 2

p m. ,
H=—+—r1r"—¢gE-r.
2m+ Zr e r

(i) Elencare gli operatori che commutano con I’Hamiltoniana, i.e., gli operatori di simme-
tria.

(i) Determinare il valor medio dell’operatore r in uno stato generico  all’istante ¢,

(W) Ir[w(z)),

come funzione di ¢, in termini dei valori medii definiti al tempo iniziale, t = 0,
utilizzando lo schema di Heisenberg.

'In altre parole, trovare la matrice p tale che il valore d’aspettazione di un operatore f che dipende solo dallo
spin di A, nello stato W, sia uguale a:

(P =T (pt), £ =(ilfl0), [ =1T)11).
2In generale, una funzione F(A) di un operatore o di una matrice A, & definita come F(A) = ¥, F(a;)|i)(il,

dove |i) & I'i-simo autovettore dell’operatore A, con autovalore ;. Si noti tuttavia che per un operatore diagonale
A =diag{aj,az,...}, essasiriduce a F(A) = diag{F (a1),F(a2),...}.



Soluzione

Problema 1.

(i) La funzione d’onda dello stato fondamentale deve essere pari, essa ha forma

k>R
Y (x) =Asin(k(x+a)), = E, —a <x < —b, 3)
k/ZﬁZ
Wy (x) = C cos(k'x), . =E—V, —b<x<b, 4)
W]][(X) = W[(—x) =-A sin(k(x—a)), b<x<a. 5
basta imporre la condizione di continuita a x = —b. La costanza di yj; significa
yy=C#0, k=0, .. W=E. (6)

Dalla continuita della funzione d’onda a x = —b si ha

Asin(k(—b+a)) =C, cos(k(—b+a)) =0; (7
Si trova dunque
2n+1
k(a—b):@, n=01,... (8)
Per lo stato fondamentale, dunque,
k2h2 2h2
k=s—,  E=S—=—— 9)
2(a—D) 2m  8m(a—b)?
e di conseguenza,
n2h?
Vo=———>0. 10
O~ 8m(a—b)? (10)

La funzione d’onda normalizzata e

W[(x) :Asin(k(x+a)), \U[](x) =A, \U[[](x) = —Asin(k(x—a)), (11
1

A= . 12
—7 (12)
(i) La funzione d’onda del primo stato eccitato ¢ dispari, ha la forma,

k2n?
yr(x) =Asin(k(x+a)), TP =E, —a <x < —b, (13)

m

k/2h2
yy7(x) = B sin(k'x), 7 =E—Vp, —b <x<b, (14)
m
Vi (x) = —yy(—x) =Asin(k(x—a)), b<x<a. (15)
Imponendo la continuita a x = —b, si ha I’equazione

1 1
%tank(a —b)= —v tank’b .
Per b < a, il secondo membro &

1
—?tank'bf: —b.



Figura 1:

per cui I’equazione da risolvere ¢ approssimativamente:

tank(a —b) = —bk . (16)
cioe:
k(a—b) ~m,
vedi Fig. 1. Ponendo
L
k= _An
a—>b
si trova che b
T
A~
ala—>b)’
T b
k= 1—-—
Cl_b( a)?

Per I’energia del primo stato eccitato, troviamo dunque

2h2 2b

b1 2m(a—b)2( 7;)'

(iii) La funzione d’onda del primo stato eccitato ¢ dispari, ha la forma,

k2n?
yi(x) =Asink(x+a), S =E, —a<x<—b, (17)
m
k/2h2
V1(x) = Dx, =E-W, —b<x<b, (18)
2m
Y (x) = =y (—x) = Asink(x —a), b<x<a. (19)

Perché y;(x) = Dx sia una soluzione nella regione —b < x < b, & necessario che
k' =0, ciog, E = Vp. La condizione di continuith a x = —b &:

tan(a — b)k = —bk .
Questa ¢ simile all’equazione approssimativa trovata al punto (ii), (16), ma questa
volta & esatta per generici valori di a,b. Graficamente vediamo che comunque

g<m—mk<m

Visto che E =V per questo stato, otteniamo per V

TCz h2 2 h2

8m(a—b)? <

T

Vi P
0= 2m(a—b)?



Problema 2.

(i)
cosOo 4 sinQ coso — sinQ
Py=———]1,00+ —10,0) .
W) 7 [1,0) 7 10,0)
(coso—sina)? 1 )
Ps,.—0 = — = 5(1 —sin2a) .
(i)
(P|f|¥) = f11 cos> o+ fry sin*al
per cui
[ cos?a 0
P= 0 sino )
(iii)
E = —cos’a log cos? o — sin® ot log sinat .
La sua derivata ¢ (vedi Fig. (2)):
oE 5 cos L sine 1 (cosz(x)
— =2cosasina lo .
da, &\ sinZat
Le radici di
JoE 0
Jdo
sono 3 3
T T T o
a=0 T e
) TE’ 2 ) 2 ) 4 ) 4 9
dove 3
T o
E(0) = E(m) = E(3) = E(5) =0; 0)
b 3n
E(iz):E(j:Z)zlogz. 21
11 primo caso (Eq. (20)), ¥ = |T]) oppure ¥ = || 1), corrisponde ad una funzione
d’onda fattorizzata; 1’osservatore che misura lo spin 1, ha una funzione d’onda (stato
puro).
Vice versa, nel secondo caso (Eq. (21)), con E = log2, si ha una massima correlazio-
ne tra il primo spin (accessibile) e il secondo spin (non accessibile). Per 1’osserva-
tore di A, si tratta di uno stato misto. Si ha un massimo entanglement (correlazione
quantistica)>.
Problema 3.
(i) Definendo
r_ .. 4 E ;_
r - r mmz ? p7

I’Hamiltoniana si riscrive come

g P2 me? B
2m 2 2mw?

3E & nota come “entropia di entanglement.” Essa rappresenta il grado di correlazion tra le due parti, e quindi
per I’osservatore di un sottosistema, il grado di ignoranza.
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Figura 2:

il sistema ¢ equivalente ad un oscillatore tridimensionale isotropo. Gli operatori di
momento angolare,
L=r'xp

ovviamente commutano con H, sono conservati.

(In realta I'Hamiltoniana & invariante per transformazioni U (3):

aj aj
ap —U ap R
as as

dove U ¢ una matrice unitaria 3 x 3, tale che
vt=u', Uvv=1
Quindi i nove generatori del gruppo U (3) sono tutti operatori conservati. )
Anche la parita
R § o § p—IpIl~!' =—p,
commuta con 1’Hamiltoniana.

(ili) Conviene prima scrivere come

(w(@)Irlw(e)) = (W) w())

PR
e andare allo schema di Heisenberg nelle nuove coordinate,

(W)X Iw(0) = m(wiry (O)1v)n -
L’equazione di Heisenberg ¢:

miy =puy; Py =-mo’ry. (22)

con la soluzione:

1 , |
ry(t) =ry(0) cos®f + o pu(0) sinwt =1’ cosmr + g psinor. (23)

(WO (o)) = () cosor + 1 (p) sinr

In termini di (r), si ha

(w(0) ||y () = [(r) — ’3752] cos 7 + miw (p) sinoz + nf—:iz :



