
Prova Scritta di Meccanica Quantistica I

Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,
10 gennaio ’08 (A.A. 07/08)

Tempo a disposizione: 3 ore.
Problemi 1 e 2 per il recupero Compitino I;
Problemi 2 e 3 per il recupero Compitino II.

Per Appello I, risolvere Prob. 1 (i), Prob. 2 (ii), (iii), e Prob. 3.

Problema 1.
Una particella di massa m è vincolata a muoversi sul segmento−a < x < a (il potenziale

è infinito per |x|> a). All’interno di questo segmento il potenziale è (V0 > 0):

V (x) =


0 , −a < x <−b,

V0 , −b < x <−b,

0 , b < x < a,

(1)

a-a -b b

x

(i) Determinare il valore di V0 di modo che la funzione d’onda dello stato fondamentale
sia costante e non nulla per −b ≤ x ≤ b. Qual’è l’energia dello stato fondamentale
in questo caso?

(ii) Per tale valore di V0 trovare l’equazione che determina implicitamente l’energia del
primo stato eccitato. Trovare la soluzione di tale equazione approssimativamente,
nel caso a� b.

(iii) Esiste, invece, un valore di V0 tale che la funzione d’onda del primo stato eccita-
to sia una funzione lineare di x, i.e., ψII ∝ x? Trovare l’equazione che determina
implicitamente E in questo caso, e dimostrare che tale V0 soddisfa alla relazione:

π2h̄2

8m(a−b)2 < V0 <
π2h̄2

2m(a−b)2

Suggerimento: utilizzate l’argomento della parità, per semplificare l’analisi.
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Problema 2.
Un sistema composto di due particelle A e B, ambedue di spin 1

2 , è descritto dalla
funzione d’onda (α = reale):

Ψ = cosα |↑↓〉+ sinα |↓↑〉, (2)

dove
|↑↓〉 ≡ |↑〉⊗ |↓〉 , |↓↑〉 ≡ |↓〉⊗ |↑〉 .

(i) Esprimere lo stato (2) in termini di autostati di spin totale S2
tot , dove Stot = s1 + s2.

Qual’è la probabilità che la misura di S2
tot dia il risultato 0?

(ii) Supponiamo che le particelle A e B si trovino a distanza tale che non possano interagire
tra di loro. Determinare la matrice densità ρ per un osservatore in grado di misurare
solo il primo spin. 1

(iii) Calcolare la quantità 2 :
E =−Tr(ρ logρ).

Trovare i minimi ed i massimi di E(α) rispetto alla variazione di α, e discutere il
significato di questi casi speciali.

Problema 3.
Un oscillatore tridimensionale (con carica elettrica q) è sottoposto ad un campo esterno

elettrico statico e omogeneo (costante), E:

H =
p2

2m
+

mω2

2
r2−qE · r .

(i) Elencare gli operatori che commutano con l’Hamiltoniana, i.e., gli operatori di simme-
tria.

(ii) Determinare il valor medio dell’operatore r in uno stato generico ψ all’istante t,

〈ψ(t)|r|ψ(t)〉 ,

come funzione di t, in termini dei valori medii definiti al tempo iniziale, t = 0,
utilizzando lo schema di Heisenberg.

1In altre parole, trovare la matrice ρ tale che il valore d’aspettazione di un operatore f che dipende solo dallo
spin di A, nello stato Ψ, sia uguale a:

〈Ψ| f |Ψ〉= Tr(ρ f) , fi j = 〈i| f | j〉, |i〉= |↑〉, |↓〉 .

2In generale, una funzione F(A) di un operatore o di una matrice A, è definita come F(A) = ∑i F(ai)|i〉〈i|,
dove |i〉 è l’i-simo autovettore dell’operatore A, con autovalore ai. Si noti tuttavia che per un operatore diagonale
A = diag{a1,a2, . . .}, essa si riduce a F(A) = diag{F(a1),F(a2), . . .}.
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Soluzione

Problema 1.

(i) La funzione d’onda dello stato fondamentale deve essere pari, essa ha forma

ψI(x) = A sin(k(x+a)),
k2h̄2

2m
= E, −a < x <−b, (3)

ψII(x) = C cos(k′x),
k′2h̄2

2m
= E−V0, −b≤ x≤ b, (4)

ψIII(x) = ψI(−x) =−A sin(k(x−a)), b < x < a. (5)

basta imporre la condizione di continuità a x =−b. La costanza di ψII significa

ψII = C 6= 0, k′ = 0, ... V0 = E. (6)

Dalla continuità della funzione d’onda a x =−b si ha

Asin(k(−b+a)) = C, cos(k(−b+a)) = 0; (7)

Si trova dunque

k(a−b) =
(2n+1)π

2
, n = 0,1, . . . (8)

Per lo stato fondamentale, dunque,

k =
π

2(a−b)
, E =

k2h̄2

2m
=

π2h̄2

8m(a−b)2 , (9)

e di conseguenza,

V0 =
π2h̄2

8m(a−b)2 > 0. (10)

La funzione d’onda normalizzata è

ψI(x) = Asin(k(x+a)), ψII(x) = A, ψIII(x) =−Asin(k(x−a)), (11)

A =
1√

a+b
. (12)

(ii) La funzione d’onda del primo stato eccitato è dispari, ha la forma,

ψI(x) = A sin(k(x+a)),
k2h̄2

2m
= E, −a < x <−b, (13)

ψII(x) = B sin(k′x),
k′2h̄2

2m
= E−V0, −b≤ x≤ b, (14)

ψIII(x) =−ψI(−x) = A sin(k(x−a)), b < x < a. (15)

Imponendo la continuità a x =−b, si ha l’equazione

1
k

tank(a−b) =− 1
k′

tank′b .

Per b� a, il secondo membro è

− 1
k′

tank′b'−b .
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Figura 1:

per cui l’equazione da risolvere è approssimativamente:

tank(a−b) =−bk . (16)

cioè:
k(a−b)∼ π ,

vedi Fig. 1. Ponendo
k =

π

a−b
−∆ ; ,

si trova che
∆' bπ

a(a−b)
,

k =
π

a−b
(1− b

a
),

Per l’energia del primo stato eccitato, troviamo dunque

E1 '
π2h̄2

2m(a−b)2 (1− 2b
a

) .

(iii) La funzione d’onda del primo stato eccitato è dispari, ha la forma,

ψI(x) = A sink(x+a),
k2h̄2

2m
= E, −a < x <−b, (17)

ψII(x) = Dx,
k′2h̄2

2m
= E−V0, −b≤ x≤ b, (18)

ψIII(x) =−ψI(−x) = A sink(x−a), b < x < a. (19)

Perché ψII(x) = Dx sia una soluzione nella regione −b < x < b, è necessario che
k′ = 0, cioè, E = V0. La condizione di continuità a x =−b è:

tan(a−b)k =−bk .

Questa è simile all’equazione approssimativa trovata al punto (ii), (16), ma questa
volta è esatta per generici valori di a,b. Graficamente vediamo che comunque

π

2
< (a−b)k < π .

Visto che E = V0 per questo stato, otteniamo per V

π2h̄2

8m(a−b)2 < V0 <
π2h̄2

2m(a−b)2
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Problema 2.

(i)

|Ψ〉=
cosα+ sinα√

2
|1,0〉+ cosα− sinα√

2
|0,0〉 .

PStot=0 =
(cosα− sinα)2

2
=

1
2
(1− sin2α) .

(ii)
〈Ψ| f |Ψ〉= f11 cos2

α+ f22 sin2
α

per cui

ρ =
(

cos2 α 0
0 sin2

α

)
.

(iii)
E =−cos2

α logcos2
α− sin2

α logsin2
α .

La sua derivata è (vedi Fig. (2)):

∂E
∂α

= 2 cosα sinα log
(

cos2 α

sin2
α

)
.

Le radici di
∂E
∂α

= 0

sono
α = 0, π,

π

2
,

3π

2
,±π

4
, ±3π

4
,

dove
E(0) = E(π) = E(

π

2
) = E(

3π

2
) = 0 ; (20)

E(±π

4
) = E(±3π

4
) = log2 . (21)

Il primo caso (Eq. (20)), Ψ = |↑↓〉 oppure Ψ = |↓↑〉, corrisponde ad una funzione
d’onda fattorizzata; l’osservatore che misura lo spin 1, ha una funzione d’onda (stato
puro).

Vice versa, nel secondo caso (Eq. (21)), con E = log2, si ha una massima correlazio-
ne tra il primo spin (accessibile) e il secondo spin (non accessibile). Per l’osserva-
tore di A, si tratta di uno stato misto. Si ha un massimo entanglement (correlazione
quantistica)3.

Problema 3.

(i) Definendo

r′ ≡ r− qE
mω2 , p′ = p,

l’Hamiltoniana si riscrive come

H =
p′2

2m
+

mω2

2
r′2− q2 E2

2mω2 :

3E è nota come “entropia di entanglement.” Essa rappresenta il grado di correlazion tra le due parti, e quindi
per l’osservatore di un sottosistema, il grado di ignoranza.
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Figura 2:

il sistema è equivalente ad un oscillatore tridimensionale isotropo. Gli operatori di
momento angolare,

L = r′×p′

ovviamente commutano con H, sono conservati.
( In realtà l’Hamiltoniana è invariante per transformazioni U(3): a1

a2
a3

→U

 a1
a2
a3

 ,

dove U è una matrice unitaria 3×3, tale che

U† = U−1, U†U = 1.

Quindi i nove generatori del gruppo U(3) sono tutti operatori conservati. )

Anche la parità

r′→Πr′Π−1 =−r′, p→ΠpΠ
−1 =−p,

commuta con l’Hamiltoniana.

(iii) Conviene prima scrivere come

〈ψ(t)|r|ψ(t)〉= 〈ψ(t)|r′|ψ(t)〉+ qE
mω2 ,

e andare allo schema di Heisenberg nelle nuove coordinate,

〈ψ(t)|r′|ψ(t)〉= H〈ψ|r′H(t)|ψ〉H .

L’equazione di Heisenberg è:

m ṙ′H = pH ; ṗH =−mω
2 r′H . (22)

con la soluzione:

r′H(t) = r′H(0) cosω t +
1

mω
pH(0) sinω t = r′ cosω t +

1
mω

p sinω t . (23)

Perciò:
〈ψ(t)|r′|ψ(t)〉= 〈r′〉 cosω t +

1
mω

〈p〉 sinω t .

In termini di 〈r〉, si ha

〈ψ(t)|r|ψ(t)〉= [〈r〉− qE
mω2 ] cosω t +

1
mω

〈p〉 sinω t +
qE

mω2 .

6


