
Appello di Meccanica Quantistica I

Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,
11 gennaio 2007 (A.A. 06/07)

Tempo a disposizione: 3 ore.
Problemi 1 e 2 per il recupero Compitino I; problemi 2 e 3 per il recupero Compitino II.

Per Appello I, risolvere Prob. 1 (ii) e (iii); Prob. 2 (i) - (iv) e Prob. 3 (i) - (iii).

Problema 1
Un oscillatore armonico unidimensionale

H0 =
p2

2m
+

1
2

κx2 (1)

nello stato fondamentale, |0〉, perde ad un tratto (t = 0) 3
4 della sua massa, mentre la costante

di richiamo κ resta invariata:

H1 =
2 p2

m
+

1
2

κx2 (2)

(i) Trovare la probabilità (P0) che il sistema si trovi nello stato fondamentale del nuovo
oscillatore H1, immediatamente dopo il cambiamento della massa;

(ii) Introdurre la rappresentazione degli operatori di creazione e di distruzione, a, a† per H0
e b, b† per H1. Trovare la relazione tra (b, b†) e (a, a†). Verificare, come controllo del
calcolo, che questa relazione sia compatibile con il fatto che [a,a†] = 1 e [b,b†] = 1

(iii) Scrivendo lo stato fondamentale dell’oscillatore originale, |0〉, in termini di autostati
di H1,

|0〉= ∑
n

cn |n〉1,

e riscrivendo la condizione a |0〉 = 0, in termini di b e b†, trovare la relazione di
ricorrenza per cn. Non è necessario risolverla.

(iv) Utilizzando alcune di queste relazioni, nonché il risultato del punto (i), trovare la pro-
babilità (P1, P2) che il systema si trovi nei primi due stati eccitati del nuovo oscil-
latore H1, immediatamente dopo il cambiamento della massa. (Nel caso in cui si
risolve questo problema, senza aver risolto il punto (i), è sufficiente determinare le
probabilità relative, P1/P0 e P2/P0. )

Problema 2.
Si consideri una particella di spin 1

2 . L’operatore di spin è data da

si =
1
2

σi,

dove σi, i = x,y,z sono le matrici di Pauli.

(i) Dire quali sono gli autovalori di σx e di σy; determinare relativi autostati (| ↑〉x, | ↓〉x;
|↑〉y, |↓〉y) , in termini degli autostati di σz, |↑〉z o |↓〉z.

(ii) Invertendo le relazioni trovate in sopra, esprimere gli stati di sz definiti, | ↑〉z o | ↓〉z, in
termini di |↑〉x e |↓〉x, nonché in termini di |↑〉y e |↓〉y.
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Una particella di spin incognito decade a riposo in tre particelle, tutte di spin 1
2 . As-

sumete che i momenti angolari orbitali siano nulli: si devono tenere conto solo di spin.
Supponiamo che lo stato sia descritto da

|ψ〉=
1√
2

( |↑〉z|↑〉z|↑〉z −|↓〉z|↓〉z|↓〉z ) . (3)

(iii) Lo stato (3) è un autostato di S2
tot? (Stot = s1 + s2 + s3) Se lo è, con quale autovalore?

È un autostato di Stot z? Se lo è, con quale autovalore?

(iv) Dire se lo stato (3) è un autostato dell’operatore

σ1x σ2x σ3x (≡ σ1x ⊗σ2x ⊗σ3x)

e se lo è, dire qual’è l’autovalore.

(v) Dire se lo stato (3) è un autostato dell’operatore

σ1x σ2y σ3y (≡ σ1x ⊗σ2y ⊗σ3y)

e se lo è, dire qual’è l’autovalore;

Problema 3.
Un atomo di idrogeno è “perturbato” da un termine

H = H0 +H ′ H0 =
p2

2m
− e2

r
, H ′ = λs · r,

dove s è l’operatore di spin dell’elettrone.

(i) In presenza di H ′ quali degli operatori s2, L2, J2, Ji sono conservati? La parità? 1 J è il
momento angolare totale, J = L+ s.

(ii) Dimostrare che nello stato fondamentale dell’atomo di idrogeno ψ100 (autostato di H0)
vale

〈100; χ
′ |H ′|100; χ〉= 0.

dove χ,χ
′

sono autovalori ±1/2 di sz.

(iii) Consideriamo gli stati di n = 2, |2, `,m;χ〉, con ` = 1. Dimostrare, utilizzando i
risultati del punto (1), che vale

〈2,1,1;−1
2
|H ′ |100;

1
2
〉+

√
2〈2,1,0;

1
2
|H ′ |100;

1
2
〉= 0, (4)

senza fare il calcolo degli elementi di matrice.

(iv) [Opzionale] Verificare la (4), facendo esplicito calcolo dei due elementi di matrice che
ci appaiono.

1L’operatore di spin si comporta nella stessa maniera di un operatore di momento angolare orbitale, sotto
parità.
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Soluzione
Problema 1.

(i) Lo stato fondamentale di H0 e quello di H1 sono rispettivamente

ψ0 =
(mω

πh̄

)1/4
e−mωx2/2h̄; ψ

′
0 =

(
m

′
ω

′

πh̄

)1/4

e−m
′
ω
′
x2/2h̄;

La frequenza angolare dell’oscillatore prima e dopo il cambiamento della massa è,

ω =
√

κ

m
, ω

′
=
√

κ

m′ , m
′
=

1
4

m. mω =
√

mκ, m
′
ω

′
=
√

m′
κ =

√
mκ

2
=

mω

2
.

La detta probabilità è data da (A ≡ mω

h̄ )

|〈ψ′
0|ψ0〉|2 =

√
A
π

√
A
2π

|
Z

dxe−Ax2/2 e−Ax2/4|2 =
1√
2

A
π

4π

3A
=

4
3
√

2
' 0.9428

(ii) Paragonando la relazione tra x, p e a,a† con quella tra x, p e b,b† si trova

a+a†
√

2
= b+b†; a−a† =

b−b†
√

2
,

da cui
a =

1
2
√

2
(3b+b†), a† =

1
2
√

2
(b+3b†);

b =
1

2
√

2
(3a−a†), b† =

1
2
√

2
(3a† −a);

Per consistenza,

[b,b†] =
1
8
(9−1) = 1,

se si utilizza [a,a†] = 1.

(iii)
(3b+b†) ∑cn |n〉1 = 0

Utilizzando i noti elementi di matrice di b e di b†,

∑cn [3
√

n |n−1〉1 +
√

n+1 |n+1〉1 ] = 0,

e proiettando questa relazione sullo stato |n〉1 si trova la relazione di ricorrenza

3
√

n+1cn+1 +
√

ncn−1 = 0, n = 1,2,3, . . .

Segue che c1 = c3 = . . . = 0, e soltanto i coefficienti pari sono non nulli. Si può
comprendere che i coefficienti dispari si annullano tutti, dal fatto che la funzione
d’onda a t = 0 è pari.

(iv) Risulta dalla relazione di ricorrenza che

c2 =− 1
3
√

2
c0.

La probabilità che il sistema si trovi nel primo stato eccitato è zero; mentre quella
per il secondo stato eccitato è:

P2 =
1
18

P0 =
1

18
4

3
√

2
' 0.05238
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Problema 2.

(i) Gli autovalori di σx, σy sono ±1, con autovettori

|↑〉x = |σx = 1〉=
1√
2

(
1
1

)
; |↓〉x = |σx =−1〉=

1√
2

(
1
−1

)
,

|↑〉y = |σy = 1〉=
1√
2

(
1
i

)
; |↓〉y = |σy =−1〉=

1√
2

(
1
−i

)
,

Oppure con la notazione di spin “up” e “down”,

|↑〉x =
1√
2
(|↑〉z + |↓〉z) |↓〉x =

1√
2
(|↑〉z −|↓〉z),

|↑〉y =
1√
2
(|↑〉z + i |↓〉z); |↓〉y =

1√
2
(|↑〉z − i |↓〉z),

(ii)
|↑〉z =

1√
2
(|↑〉x + |↓〉x); |↓〉z =

1√
2
(|↑〉x −|↓〉x);

|↑〉z =
1√
2
(|↑〉y + |↓〉y); |↓〉z =

1√
2 i

(|↑〉y −|↓〉y);

(iii) Visto che Stot z =± 3
2 , |ψ〉 è un autostato di S2

tot con autovalore 15
4 (cioè, Stot = 3

2 );
mentre ovviamente non è un autostato di Stot z.

(iv) Per vedere l’effetto dell’operatore σ1xσ2xσ3x sullo stato |ψ〉 scrivo quest’ultimo in
termini di autostati di σ1x, σ2x, σ3x :

|ψ〉 =
1
4
[(|↑〉x + |↓〉x)(|↑〉x + |↓〉x)(|↑〉x + |↓〉x)− (|↑〉x −|↓〉x)(|↑〉x −|↓〉x)(|↑〉x −|↓〉x) ]

=
1
2
[ |↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉+ |↓↓↓〉 ] (5)

Ciascun termine è un autostato dell’operatore σ1xσ2xσ3x con autovalore −1: lo
stesso vale per |ψ〉.

(v) Per vedere l’effetto dell’operatore σ1xσ2yσ3y sullo stato |ψ〉 scrivo quest’ultimo in
termini di autostati di σ1x, σ2y, σ3y :

|ψ〉 =
1
4
[(|↑〉x + |↓〉x)(|↑〉y + |↓〉y)(|↑〉y + |↓〉y)+(|↑〉x −|↓〉x)(|↑〉y −|↓〉y)(|↑〉y −|↓〉y) ]

=
1
2
[ |↑↑↑〉+ |↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉 ] (6)

Ciascun termine è un autostato dell’operatore σ1xσ2yσ3y con autovalore +1: lo
stesso vale per |ψ〉.

Nota: lo stato |ψ〉 è stato considerato da Mermin (Am. J. Phys. 58 (1990) 731), per
produrre una versione più forte dell’argomento di Bell sulla questione che riguarda le
teorie con variabili nascoste.

Problema 3.

(i) s2, J2 e Ji sono conservate. L2 non è conservato. s2 commuta con H
′

perché s2

commuta con ogni sua componente. Per vedere che J2 e Ji commutano con H
′
,

[Jz,sx x+ sy y+ sz z] = [sz +Lz,sx x+ sy y] = i sy x− i sx y+ i sx y− i sy x = 0.

La parità non è conservata.
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(ii) 〈100; χ
′ |H ′|100; χ〉 si annulla per parità. (L’integrando è dispari.)

(iii) Visto che H
′

commuta con J2, e con Jz, lo stato H ′|100 1
2 〉 ha gli stessi numeri

quantici di |100 1
2 〉, cioè, (J,Jz) = ( 1

2 , 1
2 ). Tra gli stati di n = 2, ` = 1 la

combinazione
1√
3
|2,1,1;−1

2
〉+
√

2
3
|2,1,0;

1
2
〉

è uno stato di spin totale J = 3
2 : esso è ortogonale ad ogni stato di spin

(J,Jz) = ( 1
2 , 1

2 ).

N.B L’affermazione generale di questo tipo di ragionamento è il contenuto del
teorema di Wigner-Eckart.

(iv)
〈2,1,1;−1

2
|H ′ |100;

1
2
〉= λ〈2,1,1;−1

2
|sx x+ sy y|100;

1
2
〉.

〈2,1,0;
1
2
|H ′ |100;

1
2
〉= λ〈2,1,1;

1
2
|sz z|100;

1
2
〉.

sx x+ sy y =
1
2

(
0 x− iy

x+ iy 0

)
,

sz z =
1
2

(
z 0
0 −z

)
,

perrciò (rB = 1)

〈2,1,1;−1
2
|H ′ |100;

1
2
〉= λ

2
〈2,1,1|x+iy|100〉= λ

2

Z
dr r3 R2,1R1,0

Z
d cosθdφ Y ∗

1,1 sinθeiφ Y0,0,

〈2,1,0;
1
2
|H ′ |100;

1
2
〉= λ

2
〈2,1,0|z|100〉= λ

2

Z
dr r3 R2,1R1,0

Z
d cosθdφ Y ∗

1,0 cosθY0,0.

Gl integrali sono elementari. Visto che si deve dimostrare la relazione (4), la parte
radiale (comune) è irrelevante. Gli integrali angolari danno in due casi

−
√

3
8π

1√
4π

2π

Z
d cosθ sin2

θ =−
√

2
3

;

√
3

4π

1√
4π

2π

Z
d cosθ cos2

θ =
1√
3
.
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