
Meccanica Quantistica

11 gennaio 2017 (A.A. 16/17)

Tempo a disposizione: 3 ore
Per il recupero del Compitino I risolvere il Problemi 1 e il Problemi 2 ;

Per lo scritto regolare risolvere il Problema 2 e il Problema 3.

Problema 1
Una particella di massa m si muove in due dimensioni, sottoposta al potenziale,

V (x,y) =− f δ(x)−gδ(y) , f > g > 0 . (1)

Discutere lo spettro dell’energia. Per lo spettro discreto, trovare l’energia (o le energie) e
la(e) funzione(i) d’onda relativa(e). Per lo spettro continuo classificare le soluzioni secondo
il tipo (se la particella è localizzata o meno in una o nell’altra direzione), dando per ciascun
tipo di soluzione lo spettro dell’energia relativo e la degenerazione del livello energetico.

Problema 2
Un oscillatore armonico di massa m (e di carica q), la frequenza angolare ω, e sottoposto
ad un campo elettrico esterno costante E

H =
p2

2m
+

mω2

2
x2−qEx , (2)

si trova nel suo stato fondamentale.

(i) Dire quali sono l’energia e la funzione d’onda di questo stato.

A t = 0 viene spento istantaneamente il campo elettrico. La funzione d’onda resta quella
al punto (i).

(ii) Qual’è la probabilità di trovare il sistema nello stato fondamentale del nuovo Hamilto-
niano (con E = 0), a t = 0+?

(iii) Come variano col tempo t > 0 le probabilità di trovare il sistema nei vari autostati n
del nuovo Hamiltoniano?

(iv) Discutere come varia il valor medio della posizione dell’oscillatore, 〈ψ(t)|x|ψ(t)〉, con
il tempo a t > 0.

Problema 3
Una particella con spin 1

2 e con momento magnetico µ si muove soggetta ad un campo
magnetico B diretto lungo l’asse z uniforme e costante:

B = (0,0,B0) .

1) Scrivere l’Hamiltoniana, H0, tenendo conto solo del grado di libertà di spin.

2) Quali sono gli autovalori e gli autostati relativi di H0?
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La particella si trova all’inizio nello stato sz =−1/2.

La particella si muove di moto rettilineo con velocità costante V0 lungo l’asse x, i.e.,

x = x(t) =V0 t . (3)

N.B. Il moto della particella in direzione x è trattato qui classicamente.
Nell’intorno della coordinata x = 0, c’è un campo magnetico aggiuntivo e debole,

B̃ = (0,B1 e−|x|/a cosω t,0) ; B1� B0 . (4)

Questa zona è indicata nel seguito come “apparato sperimentale”.

3) Scrivere la forma del potenziale perturbativo V (t) che la particella viene sottoposta
durante l’attraversamento dell’apparato.

4) Si calcoli in teoria delle perturbazioni al primo ordine in B1 la probabilità di inver-
sione dello spin nell’attraversare l’apparato sperimentale.

5) Si spieghi come la dipendenza da ω del risultato possa essere utilizzata per una
misura di µ e si indichi come l’errore sulla misura dipende dalla lunghezza a.

6) Si supponga di costrurire un esperimento in cui l’apparato precedente venga ripetuto
con un altro identico a distanza b� a, i.e., intorno alla coordinata x = b. Discutere
come cambia il risultato per la probabilità di inversione dello spin, assumendo che la
misura di sz sia eseguita a x� b, i.e., dopo che la particella ha attraversato ambedue
gli apparati.
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Soluzione

Problema 1
Con la separazione delle variabili,

Ψ(x,y) = ψ(x)φ(y), (5)

l’equazione di Schrödinger diventa[
− h̄2

2m
∂2

∂2x
− f δ(x)

]
ψ(x) = E1ψ(x); (6)

[
− h̄2

2m
∂2

∂2y
−gδ(y)

]
φ(y) = E2φ(y); (7)

E = E1 +E2 . (8)

Le soluzioni discreta e continua delle (6),(7) sono note. Dunque lo spettro del sistema è
seguente:

(i) Lo spettro discreto: c’è un unico stato legato con

E0 =−
m f 2

2h̄2 −
mg2

2h̄2 , (9)

Ψ0(x,y) =
√

κ1κ2 e−κ1|x|−κ2|y|, κ1 ≡
m f
h̄2 , κ2 ≡

mg
h̄2 . (10)

(ii) Lo spettro continuo: il primo tipo di soluzioni descrive uno stato localizzato in y,

φ(y) =
√

κ2 e−κ2|y|, (11)

mentre uno stato di continuo in x, con l’energia E1 ≥ 0 e con doppia degenerazione
per ogni valore di E1 > 0, quindi con energia totale

E ∈ [−mg2

2h̄2 ,∞] . (12)

Ogni stato con E >−mg2

2h̄2 è doppiamente degenere.

(iii) Il secondo tipo di soluzioni descrive uno stato localizzato in x e non localizzato in y,
con energia totale

E ∈ [−m f 2

2h̄2 ,∞] . (13)

Ogni stato con E >−m f 2

2h̄2 è doppiamente degenere.

(iv) Il terzo tipo di soluzioni corrisponde a stati di diffusioni sia in direzione x che in y, con
quadrupla degenerazione per impulsi non nulli (|k1| 6= 0, |k2| 6= 0), con l’energia

E ∈ [0,∞] . (14)
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Problema 2
(i) Scrivendo l’Hamiltoniana come

H =
p2

2m
+

mω2

2
(x− x0)

2− mω2

2
x2

0 , x0 ≡
qE

mω2 , (15)

si trova che lo stato fondamentale di questo oscillatore è

E0 =
ωh̄
2
− q2E2

2mω2 , ψ0(x) =
√

mω

πh̄
e−

mω

2h̄ (x−x0)
2
. (16)

(ii) Lo stato fondamentale del nuovo Hamiltoniano è:

ψ̃0(x) =
√

mω

πh̄
e−

mω

2h̄ x2
. (17)

La probabilità richiesta è:

P0 = |〈ψ̃0|ψ0〉|2 =
mω

πh̄

∣∣∣∣∫ dx ψ̃
∗
0ψ0

∣∣∣∣= e−
mω

2h̄ x2
0 (18)

(iii) Le probabilità in questione non variano con il tempo.

(iv) La funzione d’onda evolve nel tempo in maniera non banale, perché ψ0(x) non è
autostato del nuovo Hamiltoniano. Scrivendo

ψ0(x) = ∑
n

cnψ̃n(x) (19)

esso evolve come

ψ0(x)→ ψ(x, t) = ∑
n

cn e−iEnt/h̄
ψ̃n(x) . (20)

Il pacchetto d’onda Gaussiano (16) oscilla attorno all’origine: agli istanti

tk =
π

ω
(2k+1) , k = 1,2,3, . . . , (21)

il pacchetto d’onda è incentrato alla posizione speculare,

x =−x0; (22)

mentre a istanti corrispondenti ai periodi classici

tk =
2πk
ω

, k = 0,1,2, . . . , (23)

il pacchetto d’onda ha la stessa forma di quella originale a t = 0.

Il valor medio di x segue l’andamento dell’oscillatore classico,

〈ψ(t)|x|ψ(t)〉= x0 cosωt , (24)

come si dimostra facilmente andando nello schema di Heisenberg, e usando

〈ψ(0)|x|ψ(0)〉= x0 , 〈ψ(0)|p|ψ(0)〉= 0 . (25)
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Problema 3
La particella si muove di moto rettilineo e possiamo trascurare l’influsso sul moto del
campo magnetico, quindi possiamo porre x =V0t.

L’Hamiltoniana del sistema, relativa allo spin, è:

H =−µB0sz−µB1sy =−
1
2

µB0

(
1 −i B1

B0
e−V0|t|/a cos(ωt)

i B1
B0

e−V0|t|/a cos(ωt) −1

)
(26)

Porremo
h̄ω0 = µB0 , h̄ω1 = µB1 . (27)

Lo stato iniziale e finale hanno energia

Ei = E↑ =
1
2

h̄ω0 ; E f = E↓ =−
1
2

h̄ω0

Il potenziale di perturbazione è

V =−1
2

(
1 −iµB1e−V0|t|/a cos(ωt)

iµB1e−V0|t|/a cos(ωt) −1

)
(28)

L’ampiezza di probabilità per passare dallo stato i allo stato f è

a f i =−
i
h̄

∫
∞

−∞

e
i
h̄ (E f−Ei)Vf i(t)dt =− i

h̄

∫
∞

−∞

e−iω0t V21(t)dt

Nel fare l’integrale possiamo limitarci al termine risonante ottenendo

a(1)f i =
1
4

µB1
1
h̄

∫
∞

−∞

e−iω0te−V0|t|/aeiωt =
ω1

2
V0/a

(ω−ω0)2 +V 2
0 /a2

(29)

e quindi per la probabilità

Pi→ f =
1
4

ω
2
1
V 2

0
a2

1
((ω−ω0)2 +V 2

0 /a2)2
(30)

Il risultato è una curva risonante per ω = ω0 quindi misurando la frequenza di risonanza si
ha una misura del momento magnetico µ. In prossimità della risonanza possiamo scrivere

((ω−ω0)
2 +V 2

0 /a2)2 '
V 4

0
a4 +2(ω−ω0)

2 V 2
0

a2 = 2
V 2

0
a2

(
(ω−ω0)

2 +
V 2

0
2a2

)
quindi

Pi→ f =
1
8

ω
2
1

1

(ω−ω0)2 +
V 2

0
2a2

(31)

che è una Lorentziana con larghezza

Γ =
√

2
V0

a

che dà l’ordine di grandezza l’incertezza sulla misura. Visto che a
V0

è il tempo di attraver-
samento dell’apparato della particella, si può interpretare questo risultato come un esempio
di relazione di indeterminazione energia-tempo,

δE ·δt ∼ h̄ . (32)
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Figura 1:

La presenza di un secondo apprecchio significa un campo centrato a x = b, cioè del tipo

B1e−|x−b|/a cosωt→ B1e−|V0t−b|/a cosωt .

Per l’ampiezza di diffusione, il secondo apparecchio contribuisce con

a(1)
′

f i =
1
4

µB1
1
h̄

∫
∞

−∞

e−iω0te−(|V0t−b|/aeiωt . (33)

Cambiando variabili in t = τ+ b
V0

si ha lo stesso integrale di prima a meno di una fase

a(1)
′

f i =
1
4

µB1
1
h̄

∫
∞

−∞

e−iω0τe−|V0τ|/aeiωτei(ω−ω0)b/V0

=
1
4

ω1
2V0/a

(ω−ω0)2 +V 2
0 /a2

ei(ω−ω0)b/V0 (34)

Considerata l’approssimazione b � a, l’ampiezza totale è semplicemente la somma di
contributi dei due apparcchi (29) e (34) :

a f i =
ω1

2
V0/a

(ω−ω0)2 +V 2
0 /a2

(
1+ ei(ω−ω0)b/V0

)
. (35)

La probabilità di spin-flip è dunque

Pi→ f '
ω2

1
2

1

(ω−ω0)2 +
V 2

0
2a2

cos2 (ω−ω0)

2V0/b
. (36)

È da notare che l’interferenza tra gli effetti dei due apparecchi, tipica di meccanica quanti-
stica, produce i nodi (gli zeri) nella probablilità, migliorando di conseguenza la risoluzione
dell’apparecchio (la precisione della misura di µ = B0/h̄ω0 ) da δω0 ∼ V0

a a δω0 ∼ V0
b .

Vedi la Fig. 1 (per b = 10a).
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