Meccanica Quantistica

11 gennaio 2017 (A.A. 16/17)

Tempo a disposizione: 3 ore
Per il recupero del Compitino I risolvere il Problemi 1 e il Problemi 2 ;
Per lo scritto regolare risolvere il Problema 2 e il Problema 3.

Problema 1
Una particella di massa m si muove in due dimensioni, sottoposta al potenziale,

V(x,y)=—f0(x)—gd(y), [f>g>0. (1)

Discutere lo spettro dell’energia. Per lo spettro discreto, trovare 1’energia (o le energie) e
la(e) funzione(i) d’onda relativa(e). Per lo spettro continuo classificare le soluzioni secondo
il tipo (se la particella & localizzata o meno in una o nell’altra direzione), dando per ciascun
tipo di soluzione lo spettro dell’energia relativo e la degenerazione del livello energetico.

Problema 2

Un oscillatore armonico di massa m (e di carica g), la frequenza angolare ®, e sottoposto
ad un campo elettrico esterno costante ‘£
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si trova nel suo stato fondamentale.
(i) Dire quali sono I’energia e la funzione d’onda di questo stato.

A t = 0 viene spento istantaneamente il campo elettrico. La funzione d’onda resta quella
al punto (i).

(i) Qual’e la probabilita di trovare il sistema nello stato fondamentale del nuovo Hamilto-
niano (con £ =0),at =0,7?

(ili) Come variano col tempo ¢ > 0 le probabilita di trovare il sistema nei vari autostati n
del nuovo Hamiltoniano?

(iv) Discutere come varia il valor medio della posizione dell’ oscillatore, (w(#)|x|w(z)), con
il tempo at > 0.

Problema 3

. . 1 . .
Una particella con spin 5 € con momento magnetico y S1 muove soggetta ad un campo

magnetico B diretto lungo 1’asse z uniforme e costante:
B =(0,0,By) .
1) Scrivere I’Hamiltoniana, Hy, tenendo conto solo del grado di liberta di spin.

2) Quali sono gli autovalori e gli autostati relativi di Hy?



La particella si trova all’inizio nello stato s, = —1/2.

La particella si muove di moto rettilineo con velocita costante Vp lungo 1’asse x, i.e.,

N.B.

x=x(t)=Vot. 3)

1l moto della particella in direzione x ¢ trattato qui classicamente.

Nell’intorno della coordinata x = 0, ¢’¢ un campo magnetico aggiuntivo e debole,

B=(0,Bie M oswr,0); B <By. 4)

Questa zona ¢ indicata nel seguito come “apparato sperimentale”.

3)

4)

)

6)

Scrivere la forma del potenziale perturbativo V() che la particella viene sottoposta
durante I’ attraversamento dell’apparato.

Si calcoli in teoria delle perturbazioni al primo ordine in B la probabilita di inver-
sione dello spin nell’attraversare 1’apparato sperimentale.

Si spieghi come la dipendenza da ® del risultato possa essere utilizzata per una
misura di u e si indichi come 1’errore sulla misura dipende dalla lunghezza a.

Si supponga di costrurire un esperimento in cui I’apparato precedente venga ripetuto
con un altro identico a distanza b > a, i.e., intorno alla coordinata x = b. Discutere
come cambia il risultato per la probabilita di inversione dello spin, assumendo che la
misura di s, sia eseguita a x > b, i.e., dopo che la particella ha attraversato ambedue
gli apparati.



Soluzione

Problema 1

Con la separazione delle variabili,

W(x,y) =w(x)o(y), 5)

I’equazione di Schrodinger diventa
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Le soluzioni discreta e continua delle (6),(7) sono note. Dunque lo spettro del sistema &
seguente:

(i) Lo spettro discreto: ¢’¢ un unico stato legato con
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(ii) Lo spettro continuo: il primo tipo di soluzioni descrive uno stato localizzato in y,

O(y) = vz e b, (11)

mentre uno stato di continuo in x, con I’energia E; > 0 e con doppia degenerazione
per ogni valore di E| > 0, quindi con energia totale
mg? }

(12)

. :2 N .
Ogni stato con E > —% ¢ doppiamente degenere.

(iii) Il secondo tipo di soluzioni descrive uno stato localizzato in x e non localizzato in y,
con energia totale
mf?

Felgp =

] (13)

2
Ogni stato con E > —% ¢ doppiamente degenere.

(iv) I terzo tipo di soluzioni corrisponde a stati di diffusioni sia in direzione x che in y, con
quadrupla degenerazione per impulsi non nulli (k1| # 0, |kz| # 0), con I’energia

E €0, . (14)



Problema 2

(i) Scrivendo I’Hamiltoniana come

H=_—+—(x—x)" ——x3, X0=—> (15)

si trova che lo stato fondamentale di questo oscillatore ¢
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(ii) Lo stato fondamentale del nuovo Hamiltoniano é&:
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La probabilita richiesta ¢:
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(iii) Le probabilita in questione non variano con il tempo.

(iv) La funzione d’onda evolve nel tempo in maniera non banale, perché yo(x) non &
autostato del nuovo Hamiltoniano. Scrivendo

Yo (x) = chqfn (x) 19)

esso evolve come

vo(x) = y(x,0) =Y cpe B/, (x) . (20)

n

Il pacchetto d’onda Gaussiano (16) oscilla attorno all’origine: agli istanti
T
tk:6(2k+1)7 k=1,2,3,..., 21
il pacchetto d’onda ¢ incentrato alla posizione speculare,
X = —Xp; (22)

mentre a istanti corrispondenti ai periodi classici

2k
zk:%, k=0,1,2,.... 23)

il pacchetto d’onda ha la stessa forma di quella originale a t = 0.

Il valor medio di x segue 1I’andamento dell’oscillatore classico,
(W) x|y (7)) = xo cos o, 24)
come si dimostra facilmente andando nello schema di Heisenberg, e usando

(W) lxlw(0)) =x0,  (w(0)|p|w(0)) =0. (25)



Problema 3

La particella si muove di moto rettilineo e possiamo trascurare 1’influsso sul moto del
campo magnetico, quindi possiamo porre x = Vjt.
L’Hamiltoniana del sistema, relativa allo spin, ¢&:

- R 1 71'2—(1);3_‘/0"‘/“005((1)[) 26
H = —uBys, —uBisy = *E,UBO ig—(')e’VOW“COS(OJI) 1 (26)

Porremo
o = By, hw; = uB, . 27
Lo stato iniziale e finale hanno energia
E-—E—lh(o' Efr=E = 1h0)
i =By = 5703 F=EL= 5
Il potenziale di perturbazione &

1 1 —iuBe~Yolt/e cos (o)
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L’ampiezza di probabilita per passare dallo stato i allo stato f &
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Nel fare I’integrale possiamo limitarci al termine risonante ottenendo
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e quindi per la probabilita

Py= 1m2v—°2 ! (30)
AT (0 w92+ Vi a?)?

Il risultato ¢ una curva risonante per ® = ®y quindi misurando la frequenza di risonanza si
ha una misura del momento magnetico u. In prossimita della risonanza possiamo scrivere
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che ¢ una Lorentziana con larghezza
%
r=v22
a

che da I’ordine di grandezza I’incertezza sulla misura. Visto che Vio ¢ il tempo di attraver-
samento dell’apparato della particella, si puo interpretare questo risultato come un esempio
di relazione di indeterminazione energia-tempo,

SE -8t ~h. (32)
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Figura 1:

La presenza di un secondo apprecchio significa un campo centrato a x = b, cioe del tipo

—|Vot—b|/a

Bie PP/ coswr — Bre cos Ot .

Per I’ampiezza di diffusione, il secondo apparecchio contribuisce con
’ 1 1 /= . .
ayl) — ZIUBlﬁ [w e*l(,o()lef(l‘/ot*bl/ael(ﬂt . (33)

Cambiando variabili in t =T+ V% si ha lo stesso integrale di prima a meno di una fase
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Considerata 1’approssimazione b >> a, I’ampiezza totale ¢ semplicemente la somma di
contributi dei due apparcchi (29) e (34) :

& VO/Cl (1 _"_ei(wfu)o)b/Vo) ) (35)
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La probabilita di spin-flip &€ dunque
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E da notare che I’interferenza tra gli effetti dei due apparecchi, tipica di meccanica quanti-
stica, produce i nodi (gli zeri) nella probablilita, migliorando di conseguenza la risoluzione
dell’apparecchio (la precisione della misura di 4 = By /o ) da dwp ~ % a dwg ~ %.

Vedi la Fig. 1 (per b = 10a).



