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Facoltà di Scienze, M.F.N., Università degli Studi di Pisa,
12 giugno 2006 (A.A. 05/06)

(Tempo a disposizione: 3 ore. )

Problema 1

(1.1)
Un sistema di due spin 1

2 è descritto dall’Hamiltoniana:

H = As1 · s2 −µB · (s1 + s2), B = (0,0,B). (1)

Determinare lo spettro (i livelli di energia e le autofunzioni).

(1.2)
Un sistema di tre spin 1

2 è descritto dall’Hamiltoniana (B è come nel problema (1.1)):

H = λ(s1 + s2) · s3 −κ(s1 · s2 + s2 · s3 + s3 · s1)−µB · (s1 + s2 + s3). (2)

(i) Quali, tra gli operatori composti da componenti di S ≡ s1 + s2 e da T ≡ s1 + s2 + s3,
commutano con H e tra loro (oppure, quali sono i buon numeri quantici)?

(ii) Determinare lo spettro (i livelli di energia, la degenerazione e le autofunzioni) come
funzione di λ,κ,µB;

(iii) Discutere qual’è lo stato fondamentale, a seconda dei valori relativi di questi parame-
tri. Si assuma che µB, λ, κ siano tutti positivi.

Problema 2.
Un oscillatore unidimensionale con frequenza angolare ω e con massa m, si trova all’istante
t = 0 in uno stato descritto dalla funzione d’onda

ψ(x,0) =
√

ce−c |x|, c > 0. (3)

(i) Determinare il valor medio degli operatori x2 e p2 nello stato (3).

(ii) Determinare il valor medio dell’operatore x2, all’istante t.

Usare lo schema di Heisenberg.
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Soluzione

Problema 1.

(1.1)

H =
A
2

(S2 − 3
2
)−µBSz, S = s1 + s2. (4)

Gli autostati di H sono stati con (S,Sz) definiti, |S,Sz〉.
(i) |1,1〉: E = A

4 −µB;
(ii) |1,0〉: E = A

4 ;
(iii) |1,−1〉: E = A

4 +µB;
(iv) |0,0〉: E = − 3A

4 .

(1.2)
(i)

H =
λ

2
[T2 −S2 − 3

4
]− κ

2
[T2 − 9

4
]−µBTz. (5)

Perciò l’insieme di operatori che commutano tra loro e con H è

S2, T2, Tz. (6)

Per dimostrare che S2 commuta sia con T2 che con Tz, basta osservare che

[S2,Ti] = [S2,Si + s3 i] = 0, ∀i. (7)

(ii) Gli autostati sono etichettati da tre numeri quantici S,T,Tz, con energia

H =
λ−κ

2
T (T +1)− λ

2
S (S +1)−µBTz −

3λ

8
+

9κ

8
: (8)

(a) |1, 3
2 ,m〉:

E =
15(λ−κ)

8
−λ−µBm =

7λ−15κ

8
−µBm, m = ±3

2
, ±1

2
; (9)

(b) |1, 1
2 ,m〉:

E =
3(λ−κ)

8
−λ−µBm =

−5λ−3κ

8
−µBm m = ±1

2
; (10)

(c) |0, 1
2 ,m〉:

E =
3(λ−κ)

8
−µBm, m = ±1

2
. (11)

(iii) Per vedere quale di questi stati ha l’energia più bassa, basta considerare lo stato di m
massimo in ciascuno di (a), (b), (c), cioè: la competizione è fra i tre stati

(A) |1, 3
2 , 3

2 ,〉:

EA =
7λ−15κ

8
− 3µB

2
; (12)

(B) |1, 1
2 , 1

2 〉:

EB =
−5λ−3κ

8
− µB

2
; (13)

2



(C) |0, 1
2 , 1

2 〉:

EC =
3(λ−κ)

8
− µB

2
. (14)

Si vede subito che EB < EC sempre, perciò lo stato C può essere scartato subito.
D’altra parte,

EA −EB =
3
2
(λ−κ)−µB. (15)

Dunque lo stato fondamentale è lo stato B, |1, 1
2 , 1

2 〉, se

λ−κ >
2µB

3
; (16)

invece lo stato fondamentale è lo stato A, |1, 3
2 , 3

2 ,〉, se

λ−κ <
2µB

3
. (17)

Essi sono degeneri se λ−κ = 2µB
3 .

Questi risultati si possono capire se notiamo che nella (2) il termine di λ cerca di
massimizzare il valore di S a scapito di T , mentre il termine di κ cerca di allineare gli
spin al massimo (T al più grande possibile). La competizione di queste due tendenze
determina i risultati sopra menzionati.

2.
(i)

〈x2〉 = 2c
Z

∞

0
dxx2 e−2cx = 2c

∂2

∂λ2

Z
∞

0
dxe−λx|λ=2c =

4c
λ3 =

1
2c2 . (18)

Per calcolare il valor medio di p2, si può procedere con il calcolo diretto, ma bisogna
stare attenti:

ψ =
√

c [θ(x)e−cx +θ(−x)ecx ] (19)

pψ = −i h̄ c
√

c [−θ(x)e−cx +θ(−x)ecx ]; (20)

〈p2〉 = ||pψ|| = h̄2 c3 2
Z

∞

0
e−2cx = c2 h̄2. (21)

Oppure

p2
ψ = − h̄2 c

√
c

∂

∂x
[−θ(x)e−cx +θ(−x)ecx ] (22)

= − h̄2 c
√

c [c{θ(x)e−cx +θ(−x)ecx }−2δ(x) ] (23)

〈ψ|p2|ψ〉 = −h̄2 c2 +2h̄2 c2 = h̄2 c2. (24)

Oppure si potrebbe usare il fatto che la funzione d’onda ψ è l’autostato del sistema

Hδ =
p2

2m
−gδ(x), c =

mg
h̄2 , E0 = −mg2

2 h̄2 , (25)

per cui

〈ψ|p2|ψ〉 = 〈ψ|2mHδ +2mgδ(x)|ψ〉 = −m2 g2

h̄2 +
2m2 g2

h̄2 =
m2 g2

h̄2 = h̄2 c2. (26)
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(ii) Andando allo schema di Heisenberg,

〈ψ(t)|x2|ψ(t)〉 = 〈ψH |x2
H(t)|ψH〉, ψH = ψt=0. (27)

Risolvendo le equazioni di Heisenberg,

xH(t) = x cosω t +
1

mω
p sinω t, (28)

xH(t)2 = x2 cos2
ω t +

1
m2 ω2 p2 sin2

ω t +
1

mω
cosω t sinω t (x p+ px), (29)

L’elemento di matrice
〈ψ|x p+ px |ψ〉 = 0 (30)

si annulla poiché è reale (essendo il valor medio di un operatore Hermitiano) e allo
strsso tempo è puramente imaginario (p = −ih̄ ∂

∂x ). Perciò abbiamo che

〈ψ(t)|x2|ψ(t)〉 = 〈x2〉 cos2
ω t +

1
m2 ω2 〈p2〉 sin2

ω t =
1

2c2 cos2
ω t +

h̄2 c2

m2 ω2 sin2
ω t.
(31)

Come funzione di t questo ha i minimi e massimi agli istanti

sin2ω t = 0, ... t =
πn
2ω

, (32)

i.e., a metà dei periodi dell’oscillatore. Se

1
2c2 <

h̄2 c2

m2 ω2 , c > 2−1/4
(mω

h̄

)1/2
(33)

(c grande, la distribuzione originale stretta), si hanno i massimi quando

t =
π(2n+1)

2ω
, n = 0,1,2, . . . . (34)

Se invece
1

2c2 >
h̄2 c2

m2 ω2 , c < 2−1/4
(mω

h̄

)1/2
(35)

(c piccolo, la distribuzione originale larga), si hanno i minimi a

t =
π(2n+1)

2ω
, n = 0,1,2, . . . , (36)

i massimi a
t =

πn
ω

, n = 0,1,2, . . . , (37)

Per

c =
1

21/4

(mω

h̄

)1/2
, (38)

〈ψ(t)|x2|ψ(t)〉 è indipendente dal tempo.
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